中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

函數(shù)的奇偶性說課課件

時間:2021-06-10 13:13:54 課件 我要投稿

函數(shù)的奇偶性說課課件

  有的老師為了更好地向?qū)W生講述函數(shù)的奇偶性,提前準備了說課課件,一起去看看吧!

函數(shù)的奇偶性說課課件

  課題:1.3.2函數(shù)的奇偶性

  一、三維目標:

  知識與技能:使學生理解奇函數(shù)、偶函數(shù)的概念,學會運用定義判斷函數(shù)的奇偶性。

  過程與方法:通過設(shè)置問題情境培養(yǎng)學生判斷、推斷的能力。

  情感態(tài)度與價值觀:通過繪制和展示優(yōu)美的函數(shù)圖象來陶冶學生的情操. 通過組織學生分組討論,培養(yǎng)學生主動交流的合作精神,使學生學會認識事物的特殊性和一般性之間的關(guān)系,培養(yǎng)學生善于探索的思維品質(zhì)。

  二、學習重、難點:

  重點:函數(shù)的奇偶性的概念。

  難點:函數(shù)奇偶性的判斷。

  三、學法指導:

  學生在獨立思考的基礎(chǔ)上進行合作交流,在思考、探索和交流的過程中獲得對函數(shù)奇偶性的全面的體驗和理解。對于奇偶性的.應(yīng)用采取講練結(jié)合的方式進行處理,使學生邊學邊練,及時鞏固。

  四、知識鏈接:

  1.復(fù)習在初中學習的軸對稱圖形和中心對稱圖形的定義:

  2.分別畫出函數(shù)f (x) =x3與g (x) = x2的圖象,并說出圖象的對稱性。

  五、學習過程:

  函數(shù)的奇偶性:

  (1)對于函數(shù) ,其定義域關(guān)于原點對稱:

  如果______________________________________,那么函數(shù) 為奇函數(shù);

  如果______________________________________,那么函數(shù) 為偶函數(shù)。

  (2)奇函數(shù)的圖象關(guān)于__________對稱,偶函數(shù)的圖象關(guān)于_________對稱。

  (3)奇函數(shù)在對稱區(qū)間的增減性 ;偶函數(shù)在對稱區(qū)間的增減性 。

  六、達標訓練:

  A1、判斷下列函數(shù)的奇偶性。

  (1)f(x)=x4;    (2)f(x)=x5;

  (3)f(x)=x+     (4)f(x)=

  A2、二次函數(shù) ( )是偶函數(shù),則b=___________ .

  B3、已知 ,其中 為常數(shù),若 ,則

  _______ .

  B4、若函數(shù) 是定義在R上的奇函數(shù),則函數(shù) 的圖象關(guān)于 ( )

  (A) 軸對稱 (B) 軸對稱 (C)原點對稱 (D)以上均不對

  B5、如果定義在區(qū)間 上的函數(shù) 為奇函數(shù),則 =_____ .

  C6、若函數(shù) 是定義在R上的奇函數(shù),且當 時, ,那么當

  時, =_______ .

  D7、設(shè) 是 上的奇函數(shù), ,當 時, ,則 等于 ( )

  (A)0.5 (B) (C)1.5 (D)

  D8、定義在 上的奇函數(shù) ,則常數(shù) ____ , _____ .

  七、學習小結(jié):

  本節(jié)主要學習了函數(shù)的奇偶性,判斷函數(shù)的奇偶性通常有兩種方法,即定義法和圖象法,用定義法判斷函數(shù)的奇偶性時,必須注意首先判斷函數(shù)的定義域是否關(guān)于原點對稱。單調(diào)性與奇偶性的綜合應(yīng)用是本節(jié)的一個難點,需要學生結(jié)合函數(shù)的圖象充分理解好單調(diào)性和奇偶性這兩個性質(zhì)。

  補充練習題:

  1.下列各圖中,不能是函數(shù)f(x)圖象的是(  )

  解析:選C.結(jié)合函數(shù)的定義知,對A、B、D,定義域中每一個x都有唯一函數(shù)值與之對應(yīng);而對C,對大于0的x而言,有兩個不同值與之對應(yīng),不符合函數(shù)定義,故選C.

  2.若f(1x)=11+x,則f(x)等于(  )

  A.11+x(x≠-1)       B.1+xx(x≠0)

  C.x1+x(x≠0且x≠-1) D.1+x(x≠-1)

  解析:選C.f(1x)=11+x=1x1+1x(x≠0),

  ∴f(t)=t1+t(t≠0且t≠-1),

  ∴f(x)=x1+x(x≠0且x≠-1).

  3.已知f(x)是一次函數(shù),2f(2)-3f(1)=5,2f(0)-f(-1)=1,則f(x)=(  )

  A.3x+2 B.3x-2

  C.2x+3 D.2x-3

  解析:選B.設(shè)f(x)=kx+b(k≠0),

  ∵2f(2)-3f(1)=5,2f(0)-f(-1)=1,

  ∴k-b=5k+b=1,∴k=3b=-2,∴f(x)=3x-2.


【函數(shù)的奇偶性說課課件】相關(guān)文章:

函數(shù)奇偶性說課課件03-19

函數(shù)奇偶性課件04-09

高一函數(shù)的奇偶性課件02-20

函數(shù)的奇偶性數(shù)學課件02-20

二次函數(shù)課件說課03-18

if函數(shù)的應(yīng)用說課課件03-18

函數(shù)單調(diào)性說課課件03-17

函數(shù)及其表示說課11-26

故鄉(xiāng)說課的課件03-20