七年級數(shù)學(xué)上冊一元一次方程的應(yīng)用題期末復(fù)習(xí)題
漫長的學(xué)習(xí)生涯中,是不是聽到知識點,就立刻清醒了?知識點也可以通俗的理解為重要的內(nèi)容。哪些知識點能夠真正幫助到我們呢?下面是小編整理的七年級數(shù)學(xué)上冊一元一次方程的應(yīng)用題期末復(fù)習(xí)題,歡迎閱讀與收藏。
知識點1:市場經(jīng)濟、打折銷售問題
(1)商品利潤=商品售價-商品成本價(2)商品利潤率=×100%
(3)商品銷售額=商品銷售價×商品銷售量(4)商品的銷售利潤=(銷售價-成本價)×銷售量
(5)商品打幾折出售,就是按原價的百分之幾十出售,如商品打8折出售,即按原價的80%出售(按原價的0.8倍出售.)
1.一家商店將一種自行車按進價提高45%后標(biāo)價,又以八折優(yōu)惠賣出,結(jié)果每輛仍獲利50元,這種自行車每輛的進價是多少元?若設(shè)這種自行車每輛的進價是x元,那么所列方程為()
A.45%×(1+80%)x-x=50B.80%×(1+45%)x-x=50
C.x-80%×(1+45%)x=50D.80%×(1-45%)x-x=50
2.某商店開張,為了吸引顧客,所有商品一律按八折優(yōu)惠出售,已知某種皮鞋進價60元一雙,八折出售后商家獲利潤率為40%,問這種皮鞋標(biāo)價是多少元?優(yōu)惠價是多少元?
3.一家商店將某種服裝按進價提高40%后標(biāo)價,又以8折優(yōu)惠賣出,結(jié)果每件仍獲利15元,這種服裝每件的進價是多少?
4.某商品的進價為800元,出售時標(biāo)價為1200元,后來由于該商品積壓,商店準(zhǔn)備打折出售,但要保持利潤率不低于5%,則至多打幾折.
知識點2:方案選擇問題
1.某蔬菜公司的一種綠色蔬菜,若在市場上直接銷售,每噸利潤為1000元,經(jīng)粗加工后
銷售,每噸利潤可達4500元,經(jīng)精加工后銷售,每噸利潤漲至7500元,當(dāng)?shù)匾患夜臼召忂@種蔬菜140噸,該公司的加工生產(chǎn)能力是:如果對蔬菜進行精加工,每天可加工16噸,如果進行精加工,每天可加工6噸,但兩種加工方式不能同時進行,受季度等條件限制,公司必須在15天將這批蔬菜全部銷售或加工完畢,為此公司研制了三種可行方案:
方案一:將蔬菜全部進行粗加工.
方案二:盡可能多地對蔬菜進行粗加工,沒來得及進行加工的蔬菜,在市場上直接銷售.
方案三:將部分蔬菜進行精加工,其余蔬菜進行粗加工,并恰好15天完成.
你認為哪種方案獲利最多?為什么?
2.某市移動通訊公司開設(shè)了兩種通訊業(yè)務(wù):“全球通”使用者先繳50元月基礎(chǔ)費,然后
每通話1分鐘,再付電話費0.2元;“神州行”不繳月基礎(chǔ)費,每通話1分鐘需付話費0.4
元(這里均指市內(nèi)電話).若一個月內(nèi)通話x分鐘,兩種通話方式的費用分別為y1元和y2元.
(1)寫出y1,y2與x之間的函數(shù)關(guān)系式(即等式).
(2)一個月內(nèi)通話多少分鐘,兩種通話方式的費用相同?
(3)若某人預(yù)計一個月內(nèi)使用話費120元,則應(yīng)選擇哪一種通話方式較合算?
3.某家電商場計劃用9萬元從生產(chǎn)廠家購進50臺電視機.已知該廠家生產(chǎn)3種不同型號的電視機,出廠價分別為A種每臺1500元,B種每臺2100元,C種每臺2500元.
(1)若家電商場同時購進兩種不同型號的電視機共50臺,用去9萬元,請你研究一下商場的進貨方案.新-課--第-一-網(wǎng)
(2)若商場銷售一臺A種電視機可獲利150元,銷售一臺B種電視機可獲利200元,銷售一臺C種電視機可獲利250元,在同時購進兩種不同型號的電視機方案中,為了使銷售時獲利最多,你選擇哪種方案?
4.小剛為書房買燈,F(xiàn)有兩種燈可供選購,其中一種是9瓦的節(jié)能燈,售價為49元/盞,另一種是40瓦的白熾燈,售價為18元/盞。假設(shè)兩種燈的照明效果一樣,使用壽命都可以達到2800小時。已知小剛家所在地的電價是每千瓦時0.5元。
(1).設(shè)照明時間是x小時,請用含x的代數(shù)式分別表示用一盞節(jié)能燈和用一盞白熾燈的費用。(費用=燈的售價+電費)
(2).小剛想在這種燈中選購兩盞。假定照明時間是3000小時,使用壽命都是2800小時。請你設(shè)計一種費用最低的選燈照明方案,并說明理由。
5.某地區(qū)居民生活用電基本價格為每千瓦時0.40元,若每月用電量超過a千瓦時,則超
過部分按基本電價的70%收費。(1)某戶八月份用電84千瓦時,共交電費30.72元,求a.
(2)若該用戶九月份的平均電費為0.36元,則九月份共用電多少千瓦時?應(yīng)交電費是多少元?
知識點3:工程問題
工作量=工作效率×工作時間工作效率=工作量÷工作時間
工作時間=工作量÷工作效率完成某項任務(wù)的各工作量的和=總工作量=1
1.一件工作,甲獨作10天完成,乙獨作8天完成,兩人合作幾天完成?
2.一件工程,甲獨做需15天完成,乙獨做需12天完成,現(xiàn)先由甲、乙合作3天后,甲有其他任務(wù),剩下工程由乙單獨完成,問乙還要幾天才能完成全部工程?
3.一個蓄水池有甲、乙兩個進水管和一個丙排水管,單獨開甲管6小時可注滿水池;單獨開乙管8小時可注滿水池,單獨開丙管9小時可將滿池水排空,若先將甲、乙管同時開放2小時,然后打開丙管,問打開丙管后幾小時可注滿水池?
4.一批工業(yè)最新動態(tài)信息輸入管理儲存網(wǎng)絡(luò),甲獨做需6小時,乙獨做需4小時,甲先做
30分鐘,然后甲、乙一起做,則甲、乙一起做還需多少小時才能完成工作?
5.某車間有16名工人,每人每天可加工甲種零件5個或乙種零件4個.在這16名工人中,
一部分人加工甲種零件,其余的`加工乙種零件.已知每加工一個甲種零件可獲利16元,
每加工一個乙種零件可獲利24元.若此車間一共獲利1440元,求這一天有幾個工人加工
甲種零件.
知識點4:行程問題
基本量之間的關(guān)系:路程=速度×?xí)r間時間=路程÷速度速度=路程÷時間
(1)相遇問題(2)追及問題
快行距+慢行距=原距快行距-慢行距=原距
(3)航行問題順?biāo)?風(fēng))速度=靜水(風(fēng))速度+水流(風(fēng))速度
逆水(風(fēng))速度=靜水(風(fēng))速度-水流(風(fēng))速度
抓住兩碼頭間距離不變,水流速和船速(靜不速)不變的特點考慮相等關(guān)系.
1.甲、乙兩站相距480公里,一列慢車從甲站開出,每小時行90公里,一列快車從乙站開出,每小時行140公里。(此題關(guān)鍵是要理解清楚相向、相背、同向等的含義,弄清行駛過程。故可結(jié)合圖形分析。)
(1)慢車先開出1小時,快車再開。兩車相向而行。問快車開出多少小時后兩車相遇?
(2)兩車同時開出,相背而行多少小時后兩車相距600公里?
(3)兩車同時開出,慢車在快車后面同向而行,多少小時后快車與慢車相距600公里?
(4)兩車同時開出同向而行,快車在慢車的后面,多少小時后快車追上慢車?
(5)慢車開出1小時后兩車同向而行,快車在慢車后面,快車開出后多少小時追上慢車?
2.某船從A地順流而下到達B地,然后逆流返回,到達A、B兩地之間的C地,一共航行了7小時,已知此船在靜水中的速度為8千米/時,水流速度為2千米/時。A、C兩地之間的路程為10千米,求A、B兩地之間的路程。
3.有一火車以每分鐘600米的速度要過完第一、第二兩座鐵橋,過第二鐵橋比過第一鐵橋需多5秒,又知第二鐵橋的長度比第一鐵橋長度的2倍短50米,試求各鐵橋的長.
4.已知甲、乙兩地相距120千米,乙的速度比甲每小時快1千米,甲先從A地出發(fā)2小時后,乙從B地出發(fā),與甲相向而行經(jīng)過10小時后相遇,求甲乙的速度?
知識點5:數(shù)字問題
(1)要搞清楚數(shù)的表示方法:一個三位數(shù)的百位數(shù)字為a,十位數(shù)字是b,個位數(shù)字為c(其中a、b、c均為整數(shù),且1≤a≤9,0≤b≤9,0≤c≤9)則這個三位數(shù)表示為:100a+10b+c。然后抓住數(shù)字間或新數(shù)、原數(shù)之間的關(guān)系找等量關(guān)系列方程.
(2)數(shù)字問題中一些表示:兩個連續(xù)整數(shù)之間的關(guān)系,較大的比較小的大1;偶數(shù)用2n表示,連續(xù)的偶數(shù)用2n+2或2n—2表示;奇數(shù)用2n+1或2n—1表示。
1.一個三位數(shù),三個數(shù)位上的數(shù)字之和是17,百位上的數(shù)比十位上的數(shù)大7,個位上的數(shù)是十位上的數(shù)的3倍,求這個三位數(shù).
2.一個兩位數(shù),個位上的數(shù)是十位上的數(shù)的2倍,如果把十位與個位上的數(shù)對調(diào),那么所得的兩位數(shù)比原兩位數(shù)大36,求原來的兩位數(shù)
知識點6儲蓄、儲蓄利息問題
(1)顧客存入銀行的錢叫做本金,銀行付給顧客的酬金叫利息,本金和利息合稱本息和,存入銀行的時間叫做期數(shù),利息與本金的比叫做利率。利息的20%付利息稅
(2)利息=本金×利率×期數(shù)本息和=本金+利息利息稅=利息×稅率(20%)
(3)
1.某同學(xué)把250元錢存入銀行,整存整取,存期為半年。半年后共得本息和252.7元,求銀行半年期的年利率是多少?(不計利息稅)
2.小剛的爸爸前年買了某公司的二年期債券4500元,今年到期,扣除利息稅后,共得本
利和約4700元,問這種債券的年利率是多少(精確到0.01%).
3.用若干元人民幣購買了一種年利率為10%的一年期債券,到期后他取出本金的一半用作購物,剩下的一半和所得的利息又全部買了這種一年期債券(利率不變),到期后得本息和1320元。問張叔叔當(dāng)初購買這咱債券花了多少元?
知識點7:若干應(yīng)用問題等量關(guān)系的規(guī)律
(1)和、差、倍、分問題此類題既可有示運算關(guān)系,又可表示相等關(guān)系,要結(jié)合題意特別注意題目中的關(guān)鍵詞語的含義,如相等、和差、幾倍、幾分之幾、多、少、快、慢等,它們能指導(dǎo)我們正確地列出代數(shù)式或方程式。增長量=原有量×增長率現(xiàn)在量=原有量+增長量
(2)等積變形問題
常見幾何圖形的面積、體積、周長計算公式,依據(jù)形雖變,但體積不變.
、賵A柱體的體積公式V=底面積×高=Sh=r2h
②長方體的體積V=長×寬×高=abc
1.某糧庫裝糧食,第一個倉庫是第二個倉庫存糧的3倍,如果從第一個倉庫中取出20噸放入第二個倉庫中,第二個倉庫中的糧食是第一個中的。問每個倉庫各有多少糧食?
2.一個裝滿水的內(nèi)部長、寬、高分別為300毫米,300毫米和80毫米的長方體鐵盒中的水,倒入一個內(nèi)徑為200毫米的圓柱形水桶中,正好倒?jié)M,求圓柱形水桶的高(精確到0.1毫米,≈3.14).
【核心提示】
一元一次方程的核心問題是解方程和列方程解應(yīng)用題。解含分母的方程時要找出分母的最小公倍數(shù),去掉分母,一定要添上括號,這樣不容易出錯.解含參數(shù)方程或絕對值方程時,要學(xué)會代入和分類討論。列方程解應(yīng)用題,主要是列方程,要注意列出的方程必須能解、易解,也就是列方程時要選取合適的等量關(guān)系。
【典型例題】
例1已知方程2x+3=2a與2x+a=2的解相同,求a的值.
分析因為兩方程的解相同,可以先解出其中一個,把這個方程的解代入另一個方程,即可求解.認真觀察可知,本題不需求出x,可把2x整體代入.
解由2x+3=2a,得2x=2a-3.
把2x=2a-3代入2x+a=2得
2a-3+a=2,
3a=5,
分析這是一個非常好的題目,包括了去分母容易錯的地方,去括號忘變號的情況.
解兩邊同時乘以6,得
6x-3(x-1)=12-2(x+1)
去分母,得
6x-3x+3=12-2x-2
6x-3x+2x=12-2-3
5x=7
例4解方程│x-1│+│x-5│=4
【七年級數(shù)學(xué)上冊一元一次方程的應(yīng)用題期末復(fù)習(xí)題】相關(guān)文章:
七年級數(shù)學(xué)上冊一元一次方程應(yīng)用題的期末復(fù)習(xí)題06-19
語文上冊期末復(fù)習(xí)題06-17
小學(xué)五年數(shù)學(xué)上冊期末復(fù)習(xí)題06-18
期末數(shù)學(xué)復(fù)習(xí)題精選06-17
七年級上冊數(shù)學(xué)有理數(shù)期末復(fù)習(xí)題及答案06-27
數(shù)學(xué)比和比例應(yīng)用題總復(fù)習(xí)題06-16