函數(shù)知識(shí)點(diǎn)總結(jié)(大全15篇)
總結(jié)是事后對(duì)某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析的一種書面材料,它可以明確下一步的工作方向,少走彎路,少犯錯(cuò)誤,提高工作效益,讓我們一起來學(xué)習(xí)寫總結(jié)吧?偨Y(jié)怎么寫才不會(huì)流于形式呢?下面是小編為大家收集的函數(shù)知識(shí)點(diǎn)總結(jié),歡迎閱讀與收藏。
函數(shù)知識(shí)點(diǎn)總結(jié)1
奇函數(shù)和偶函數(shù)的定義
奇函數(shù):如果函數(shù)f(x)的定義域中任意x有f(—x)=—f(x),則函數(shù)f(x)稱為奇函數(shù)。
偶數(shù)函數(shù):如果函數(shù)f(x)的定義域中任意x有f(—x)=f(x),則函數(shù)f(x)稱為偶數(shù)函數(shù)。
性質(zhì)
奇函數(shù)性質(zhì):
1、圖象關(guān)于原點(diǎn)對(duì)稱
2、滿足f(—x)= — f(x)
3、關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性一致
4、如果奇函數(shù)在x=0上有定義,那么有f(0)=0
5、定義域關(guān)于原點(diǎn)對(duì)稱(奇偶函數(shù)共有的)
偶函數(shù)性質(zhì):
1、圖象關(guān)于y軸對(duì)稱
2、滿足f(—x)= f(x)
3、關(guān)于原點(diǎn)對(duì)稱的`區(qū)間上單調(diào)性相反
4、如果一個(gè)函數(shù)既是奇函數(shù)有是偶函數(shù),那么有f(x)=0
5、定義域關(guān)于原點(diǎn)對(duì)稱(奇偶函數(shù)共有的)
常用運(yùn)算方法
奇函數(shù)±奇函數(shù)=奇函數(shù)
偶函數(shù)±偶函數(shù)=偶函數(shù)
奇函數(shù)×奇函數(shù)=偶函數(shù)
偶函數(shù)×偶函數(shù)=偶函數(shù)
奇函數(shù)×偶函數(shù)=奇函數(shù)
證明方法
設(shè)f(x),g(x)為奇函數(shù),t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=—f(x)+(—g(x))=—t(x),所以奇函數(shù)加奇函數(shù)還是奇函數(shù);
若f(x),g(x)為偶函數(shù),t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=f(x)+g(x)=t(x),所以偶函數(shù)加偶函數(shù)還是偶函數(shù)。
函數(shù)知識(shí)點(diǎn)總結(jié)2
二次函數(shù)概念
一般地,把形如y=ax2+bx+c(其中a、b、c是常數(shù),a≠0,b,c可以為0)的函數(shù)叫做二次函數(shù),其中a稱為二次項(xiàng)系數(shù),b為一次項(xiàng)系數(shù),c為常數(shù)項(xiàng)。x為自變量,y為因變量。等號(hào)右邊自變量的最高次數(shù)是2。二次函數(shù)圖像是軸對(duì)稱圖形。
注意:“變量”不同于“自變量”,不能說“二次函數(shù)是指變量的最高次數(shù)為二次的多項(xiàng)式函數(shù)”!拔粗獢(shù)”只是一個(gè)數(shù)(具體值未知,但是只取一個(gè)值),“變量”可在實(shí)數(shù)范圍內(nèi)任意取值。在方程中適用“未知數(shù)”的概念(函數(shù)方程、微分方程中是未知函數(shù),但不論是未知數(shù)還是未知函數(shù),一般都表示一個(gè)數(shù)或函數(shù)——也會(huì)遇到特殊情況),但是函數(shù)中的'字母表示的是變量,意義已經(jīng)有所不同。從函數(shù)的定義也可看出二者的差別,如同函數(shù)不等于函數(shù)的關(guān)系。
二次函數(shù)公式大全
二次函數(shù)
I.定義與定義表達(dá)式
一般地,自變量x和因變量y之間存在如下關(guān)系:
y=ax2+bx+c(a,b,c為常數(shù),a≠0)
則稱y為x的二次函數(shù)。
二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
II.二次函數(shù)的三種表達(dá)式
一般式:y=ax2;+bx+c(a,b,c為常數(shù),a≠0)
頂點(diǎn)式:y=a(x-h)2;+k [拋物線的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x-x1)(x-x2) [僅限于與x軸有交點(diǎn)A(x1,0)和 B(x2,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=-b/2a k=(4ac-b2;)/4a x1,x2=(-b±√b2;-4ac)/2a
III.二次函數(shù)的圖象
在平面直角坐標(biāo)系中作出二次函數(shù)y=x??的圖象,
可以看出,二次函數(shù)的圖象是一條拋物線。
IV.拋物線的性質(zhì)
1.拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線
x = -b/2a。
對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。
特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)
2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為
P [ -b/2a ,(4ac-b2;)/4a ]。
當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ= b2-4ac=0時(shí),P在x軸上。
3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。
|a|越大,則拋物線的開口越小。
4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab>0),對(duì)稱軸在y軸左;
當(dāng)a與b異號(hào)時(shí)(即ab<0),對(duì)稱軸在y軸右。
5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。
拋物線與y軸交于(0,c)
6.拋物線與x軸交點(diǎn)個(gè)數(shù)
Δ= b2-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。
Δ= b2-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。
Δ= b2-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。
V.二次函數(shù)與一元二次方程
特別地,二次函數(shù)(以下稱函數(shù))y=ax2;+bx+c,
當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),
即ax2;+bx+c=0
此時(shí),函數(shù)圖象與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。
函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。
函數(shù)知識(shí)點(diǎn)總結(jié)3
特別地,二次函數(shù)(以下稱函數(shù))y=ax+bx+c。
當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),即ax+bx+c=0。
此時(shí),函數(shù)圖像與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。
1.二次函數(shù)y=ax,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a≠0)的圖象形狀相同,只是位置不同。當(dāng)h>0時(shí),y=a(x-h)的圖象可由拋物線y=ax向右平行移動(dòng)h個(gè)單位得到。
當(dāng)h<0時(shí),則向xxx移動(dòng)|h|個(gè)單位得到。
當(dāng)h>0,k>0時(shí),將拋物線y=ax向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x-h)+k的圖象。
當(dāng)h>0,k<0時(shí),將拋物線y=ax向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)+k的圖象。
當(dāng)h<0,k>0時(shí),將拋物線向xxx移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x-h)+k的圖象。
當(dāng)h<0,k<0時(shí),將拋物線向xxx移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x-h)+k的圖象。
因此,研究拋物線y=ax+bx+c(a≠0)的圖象,通過配方,將一般式化為y=a(x-h)+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了.這給畫圖象提供了方便。
2.拋物線y=ax+bx+c(a≠0)的圖象:當(dāng)a>0時(shí),開口向上,當(dāng)a<0時(shí)開口向下,對(duì)稱軸是直線x=-b/2a,頂點(diǎn)坐標(biāo)是(-b/2a,[4ac-b]/4a)。
3.拋物線y=ax+bx+c(a≠0),若a>0,當(dāng)x≤-b/2a時(shí),y隨x的增大而減。划(dāng)x≥-b/2a時(shí),y隨x的增大而增大.若a<0,當(dāng)x≤-b/2a時(shí),y隨x的增大而增大;當(dāng)x≥-b/2a時(shí),y隨x的.增大而減小。
4.拋物線y=ax+bx+c的圖象與坐標(biāo)軸的交點(diǎn):
(1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c)。
(2)當(dāng)△=b^2-4ac>0,圖象與x軸交于兩點(diǎn)A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax+bx+c=0(a≠0)的兩根.這兩點(diǎn)間的距離AB=|x-x|。
當(dāng)△=0.圖象與x軸只有一個(gè)交點(diǎn);當(dāng)△<0.圖象與x軸沒有交點(diǎn).當(dāng)a>0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y>0;當(dāng)a<0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y<0。
5.拋物線y=ax+bx+c的最值:如果a>0(a<0),則當(dāng)x=-b/2a時(shí),y最小(大)值=(4ac-b)/4a。
頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值。
6.用待定系數(shù)法求二次函數(shù)的解析式
(1)當(dāng)題給條件為已知圖象經(jīng)過三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:y=ax+bx+c(a≠0)。
(2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x-h)+k(a≠0)。
(3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x-x)(x-x)(a≠0)。
函數(shù)知識(shí)點(diǎn)總結(jié)4
反比例函數(shù)的表達(dá)式
X是自變量,Y是X的函數(shù)
y=k/x=k·1/x
xy=k
y=k·x^(-1)(即:y等于x的負(fù)一次方,此處X必須為一次方)
y=kx(k為常數(shù)且k≠0,x≠0)若y=k/nx此時(shí)比例系數(shù)為:k/n
函數(shù)式中自變量取值的范圍
、賙≠0;②在一般的情況下,自變量x的取值范圍可以是不等于0的'任意實(shí)數(shù);③函數(shù)y的取值范圍也是任意非零實(shí)數(shù)! 〗馕鍪統(tǒng)=k/x其中X是自變量,Y是X的函數(shù),其定義域是不等于0的一切實(shí)數(shù)
y=k/x=k·1/x xy=k y=k·x^(-1) y=kx(k為常數(shù)(k≠0),x不等于0)
反比例函數(shù)圖象
反比例函數(shù)的圖像屬于以原點(diǎn)為對(duì)稱中心的中心對(duì)稱的雙曲線,反比例函數(shù)圖像中每一象限的每一支曲線會(huì)無限接近X軸Y軸但不會(huì)與坐標(biāo)軸相交(K≠0)。
反比例函數(shù)中k的幾何意義是什么?有哪些應(yīng)用
過反比例函數(shù)y=k/x(k≠0),圖像上一點(diǎn)P(x,y),作兩坐標(biāo)軸的垂線,兩垂足、原點(diǎn)、P點(diǎn)組成一個(gè)矩形,矩形的面積S=x的絕對(duì)值*y的絕對(duì)值=(x*y)的絕對(duì)值=|k|
研究函數(shù)問題要透視函數(shù)的本質(zhì)特征。反比例函數(shù)中,比例系數(shù)k有一個(gè)很重要的幾何意義,那就是:過反比例函數(shù)圖象上任一點(diǎn)P作x軸、y軸的垂線PM、PN,垂足為M、N則矩形PMON的面積S=PM·PN=|y|·|x|=|xy|=|k|。
所以,對(duì)雙曲線上任意一點(diǎn)作x軸、y軸的垂線,它們與x軸、y軸所圍成的矩形面積為常數(shù)。從而有k的絕對(duì)值。在解有關(guān)反比例函數(shù)的問題時(shí),若能靈活運(yùn)用反比例函數(shù)中k的幾何意義,會(huì)給解題帶來很多方便。
函數(shù)知識(shí)點(diǎn)總結(jié)5
1.函數(shù)的定義
函數(shù)是高考數(shù)學(xué)中的重點(diǎn)內(nèi)容,學(xué)習(xí)函數(shù)需要首先掌握函數(shù)的各個(gè)知識(shí)點(diǎn),然后運(yùn)用函數(shù)的各種性質(zhì)來解決具體的問題。
設(shè)A、B是非空的數(shù)集,如果按照某種確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A-B為從集合A到集合B的一個(gè)函數(shù),記作y=f(x),xA
2.函數(shù)的`定義域
函數(shù)的定義域分為自然定義域和實(shí)際定義域兩種,如果給定的函數(shù)的解析式(不注明定義域),其定義域應(yīng)指的是使該解析式有意義的自變量的取值范圍(稱為自然定義域),如果函數(shù)是有實(shí)際問題確定的,這時(shí)應(yīng)根據(jù)自變量的實(shí)際意義來確定,函數(shù)的值域是由全體函數(shù)值組成的集合。
3.求解析式
求函數(shù)的解析式一般有三種種情況:
。1)根據(jù)實(shí)際問題建立函數(shù)關(guān)系式,這種情況需引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識(shí)找出函數(shù)關(guān)系式。
。2)有時(shí)體中給出函數(shù)特征,求函數(shù)的解析式,可用待定系數(shù)法。
。3)換元法求解析式,f[h(x)]=g(x)求f(x)的問題,往往可設(shè)h(x)=t,從中解出x,代入g(x)進(jìn)行換元來解。掌握求函數(shù)解析式的前提是,需要對(duì)各種函數(shù)的性質(zhì)了解且熟悉。
目前我們已經(jīng)學(xué)習(xí)了常數(shù)函數(shù)、指數(shù)與指數(shù)函數(shù)、對(duì)數(shù)與對(duì)數(shù)函數(shù)、冪函數(shù)、三角函數(shù)、反比例函數(shù)、二次函數(shù)以及由以上幾種函數(shù)加減乘除,或者復(fù)合的一些相對(duì)較復(fù)雜的函數(shù),但是這種函數(shù)也是初等函數(shù)。
函數(shù)知識(shí)點(diǎn)總結(jié)6
1、變量與常量
在某一變化過程中,可以取不同數(shù)值的量叫做變量,數(shù)值保持不變的量叫做常量。
一般地,在某一變化過程中有兩個(gè)變量x與y,如果對(duì)于x的每一個(gè)值,y都有確定的值與它對(duì)應(yīng),那么就說x是自變量,y是x的函數(shù)。
2、函數(shù)解析式
用來表示函數(shù)關(guān)系的數(shù)學(xué)式子叫做函數(shù)解析式或函數(shù)關(guān)系式。
使函數(shù)有意義的自變量的取值的全體,叫做自變量的取值范圍。
3、函數(shù)的三種表示法及其優(yōu)缺點(diǎn)
(1)解析法
兩個(gè)變量間的函數(shù)關(guān)系,有時(shí)可以用一個(gè)含有這兩個(gè)變量及數(shù)字運(yùn)算符號(hào)的等式表示,這種表示法叫做解析法。
(2)列表法
把自變量x的一系列值和函數(shù)y的對(duì)應(yīng)值列成一個(gè)表來表示函數(shù)關(guān)系,這種表示法叫做列表法。
(3)圖像法
用圖像表示函數(shù)關(guān)系的方法叫做圖像法。
4、由函數(shù)解析式畫其圖像的一般步驟
(1)列表:列表給出自變量與函數(shù)的一些對(duì)應(yīng)值
(2)描點(diǎn):以表中每對(duì)對(duì)應(yīng)值為坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn)
(3)連線:按照自變量由小到大的順序,把所描各點(diǎn)用平滑的曲線連接起來。
初中怎樣學(xué)好數(shù)學(xué)
學(xué)好初中數(shù)學(xué)培養(yǎng)運(yùn)算能力
初中數(shù)學(xué)涉及到大量的運(yùn)算內(nèi)容,比如有理數(shù)的運(yùn)算、因式分解、根式的運(yùn)算和解方程,這些都是初中數(shù)學(xué)涉及到的知識(shí)內(nèi)容,如果初中生數(shù)學(xué)運(yùn)算能力不過關(guān),那么成績(jī)?cè)趺茨芴岣吣?所以運(yùn)算是學(xué)好初中數(shù)學(xué)的基本功,這個(gè)基本功一定要扎實(shí),不然以后的初中數(shù)學(xué)就可以不用學(xué)習(xí)了。
初中生在解答運(yùn)算題的時(shí)候,不要急躁,靜下心來。初中數(shù)學(xué)運(yùn)算的過程是很重要的,這也是初中生對(duì)于數(shù)學(xué)邏輯和思維的培養(yǎng)過程,結(jié)果要準(zhǔn)確;同時(shí)初中生還有要絕對(duì)的自信,不要求速度可以慢一點(diǎn)的,盡量一次做對(duì)。
學(xué)好初中數(shù)學(xué)做題的數(shù)量不能少
不可否認(rèn),想要學(xué)好初中數(shù)學(xué),就要做一定量的數(shù)學(xué)題。不贊同大量的刷題,那樣沒有什么意義。初中生做數(shù)學(xué)題主要是以基礎(chǔ)題的練習(xí)為主,將初中數(shù)學(xué)的基礎(chǔ)題弄懂的同時(shí),反復(fù)的做一些比較典型的題,這樣才是初中生正確的學(xué)習(xí)數(shù)學(xué)方式。
在初中階段,學(xué)生要鍛煉自己數(shù)學(xué)的抽象思維能力,最好的結(jié)果是在不用書寫的情況下,就能夠得到正確的答案,這也就是我們常說的熟能生巧。同時(shí)也是初中生數(shù)學(xué)基礎(chǔ)知識(shí)牢固的體現(xiàn)。相反的,有的初中生在做練習(xí)題的時(shí)候,比較盲目和急躁,這樣的結(jié)果就是粗心大意,馬虎出錯(cuò)。
課上重視聽講課下及時(shí)復(fù)習(xí)
初中生數(shù)學(xué)能力的培養(yǎng)一部分在于平時(shí)做題的過程中,另一部分就在課堂上。所以初中生想要學(xué)好數(shù)學(xué),就要重視課內(nèi)的學(xué)習(xí)效率,在課上的時(shí)候要跟緊老師的思路,大膽的推測(cè)老師下一步講課的`知識(shí),尤其是基礎(chǔ)知識(shí)的學(xué)習(xí)。在課后初中生還要對(duì)學(xué)習(xí)的數(shù)學(xué)知識(shí)點(diǎn)及時(shí)復(fù)習(xí)。對(duì)于每個(gè)階段初中數(shù)學(xué)的學(xué)習(xí)要進(jìn)行知識(shí)點(diǎn)歸納和整理。
初中數(shù)學(xué)多項(xiàng)式知識(shí)點(diǎn)
1、幾個(gè)單項(xiàng)式的和叫做多項(xiàng)式。
2、多項(xiàng)式中的每一個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng)。
3、多項(xiàng)式中不含字母的項(xiàng)叫做常數(shù)項(xiàng)。
4、一個(gè)多項(xiàng)式有幾項(xiàng),就叫做幾項(xiàng)式。
5、多項(xiàng)式的每一項(xiàng)都包括項(xiàng)前面的符號(hào)。
6、多項(xiàng)式?jīng)]有系數(shù)的概念,但有次數(shù)的概念。
7、多項(xiàng)式中次數(shù)的項(xiàng)的次數(shù),叫做這個(gè)多項(xiàng)式的次數(shù)。
函數(shù)知識(shí)點(diǎn)總結(jié)7
一次函數(shù)知識(shí)點(diǎn)總結(jié)基本概念
1、變量:在一個(gè)變化過程中可以取不同數(shù)值的量。常量:在一個(gè)變化過程中只能取同一數(shù)值的量。
例題:在勻速運(yùn)動(dòng)公式svt中,v表示速度,t表示時(shí)間,s表示在時(shí)間t內(nèi)所走的路程,則變量是________,常量是_______。在圓的周長(zhǎng)公式C=2πr中,變量是________,常量是_________.
2、函數(shù):一般的,在一個(gè)變化過程中,如果有兩個(gè)變量x和y,并且對(duì)于x的每一個(gè)確定的值,y都有唯一確定的值與其對(duì)應(yīng),那么我們就把x稱為自變量,把y稱為因變量,y是x的函數(shù)。
*判斷Y是否為X的函數(shù),只要看X取值確定的時(shí)候,Y是否有唯一確定的值與之對(duì)應(yīng)
1-12
例題:下列函數(shù)(1)y=πx(2)y=2x-1(3)y=(4)y=2-3x(5)y=x-1中,是一次函數(shù)的有()
x(A)4個(gè)(B)3個(gè)(C)2個(gè)(D)1個(gè)
3、定義域:一般的,一個(gè)函數(shù)的自變量允許取值的范圍,叫做這個(gè)函數(shù)的定義域。(x的.取值范圍)一次函數(shù)
1..自變量x和因變量y有如下關(guān)系:
y=kx+b(k為任意不為零實(shí)數(shù),b為任意實(shí)數(shù))則此時(shí)稱y是x的一次函數(shù)。特別的,當(dāng)b=0時(shí),y是x的正比例函數(shù)。即:y=kx(k為任意不為零實(shí)數(shù))
定義域:自變量的取值范圍,自變量的取值應(yīng)使函數(shù)有意義;要與實(shí)際有意義。
2.當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。
一次函數(shù)性質(zhì):
1在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b(k≠0)。
2一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。3.函數(shù)不是數(shù),它是指某一變量過程中兩個(gè)變量之間的關(guān)系。
特別地,當(dāng)b=0時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。
這時(shí),當(dāng)k>0時(shí),直線只通過一、三象限;當(dāng)k<0時(shí),直線只通過二、四象限。4、特殊位置關(guān)系
當(dāng)平面直角坐標(biāo)系中兩直線平行時(shí),其函數(shù)解析式中K值(即一次項(xiàng)系數(shù))相等
當(dāng)平面直角坐標(biāo)系中兩直線垂直時(shí),其函數(shù)解析式中K值互為負(fù)倒數(shù)(即兩個(gè)K值的乘積為-1)
應(yīng)用
一次函數(shù)y=kx+b的性質(zhì)是:(1)當(dāng)k>0時(shí),y隨x的增大而增大;(2)當(dāng)kx2B.x10,且y1>y2。根據(jù)一次函數(shù)的性質(zhì)“當(dāng)k>0時(shí),y隨x的增大而增大”,得x1>x2。故選A。
判斷函數(shù)圖象的位置
例3.一次函數(shù)y=kx+b滿足kb>0,且y隨x的增大而減小,則此函數(shù)的圖象不經(jīng)過()A.第一象限B.第二象限
C.第三象限D(zhuǎn).第四象限
解:由kb>0,知k、b同號(hào)。因?yàn)閥隨x的增大而減小,所以k
解析式:y=kx(k是常數(shù),k≠0)必過點(diǎn):(0,0)、(1,k)
走向:k>0時(shí),圖像經(jīng)過一、三象限;k0,y隨x的增大而增大;k0時(shí),向上平移;當(dāng)b0,圖象經(jīng)過第一、三象限;k0,圖象經(jīng)過第一、二象限;b0,y隨x的增大而增大;k0時(shí),將直線y=kx的圖象向上平移b個(gè)單位;當(dāng)b
若直線yxa和直線yxb的交點(diǎn)坐標(biāo)為(m,8),則ab____________.已知函數(shù)y=3x+1,當(dāng)自變量增加m時(shí),相應(yīng)的函數(shù)值增加()A.3m+1B.3mC.mD.3m-1
11、一次函數(shù)y=kx+b的圖象的畫法.
根據(jù)幾何知識(shí):經(jīng)過兩點(diǎn)能畫出一條直線,并且只能畫出一條直線,即兩點(diǎn)確定一條直線,所以畫一次函數(shù)的圖
象時(shí),只要先描出兩點(diǎn),再連成直線即可.一般情況下:是先選取它與兩坐標(biāo)軸的交點(diǎn):(0,b),坐標(biāo)或縱坐標(biāo)為0的點(diǎn).
b>0經(jīng)過第一、二、三象限b0圖象從左到右上升,y隨x的增大而增大經(jīng)過第一、二、四象限經(jīng)過第二、三、四象限經(jīng)過第二、四象限k0時(shí),向上平移;當(dāng)b
某個(gè)一次函數(shù)的值為0時(shí),求相應(yīng)的自變量的值.從圖象上看,相當(dāng)于已知直線y=ax+b確定它與x軸的交點(diǎn)的橫坐標(biāo)的值.
函數(shù)知識(shí)點(diǎn)總結(jié)8
總體上必須清楚的:
1)程序結(jié)構(gòu)是三種:順序結(jié)構(gòu)、選擇結(jié)構(gòu)(分支結(jié)構(gòu))、循環(huán)結(jié)構(gòu)。
2)讀程序都要從main()入口,然后從最上面順序往下讀(碰到循環(huán)做循環(huán),碰到選擇做選擇),有且只有一個(gè)main函數(shù)。
3)計(jì)算機(jī)的數(shù)據(jù)在電腦中保存是以二進(jìn)制的形式.數(shù)據(jù)存放的位置就是他的地址.
4)bit是位是指為0或者1。 byte是指字節(jié),一個(gè)字節(jié)=八個(gè)位.
概念?嫉降模
1、編譯預(yù)處理不是C語言的一部分,不占運(yùn)行時(shí)間,不要加分號(hào)。C語言編譯的程序稱為源程序,它以ASCII數(shù)值存放在文本文件中。
2、define PI 3.1415926;這個(gè)寫法是錯(cuò)誤的,一定不能出現(xiàn)分號(hào)。 -
3、每個(gè)C語言程序中main函數(shù)是有且只有一個(gè)。
4、在函數(shù)中不可以再定義函數(shù)。
5、算法:可以沒有輸入,但是一定要有輸出。
6、break可用于循環(huán)結(jié)構(gòu)和switch語句。
7、逗號(hào)運(yùn)算符的級(jí)別最低,賦值的級(jí)別倒數(shù)第二。
第一章C語言的基礎(chǔ)知識(shí)
第一節(jié)、對(duì)C語言的基礎(chǔ)認(rèn)識(shí)
1、C語言編寫的程序稱為源程序,又稱為編譯單位。
2、C語言書寫格式是自由的,每行可以寫多個(gè)語句,可以寫多行。
3、一個(gè)C語言程序有且只有一個(gè)main函數(shù),是程序運(yùn)行的起點(diǎn)。
第二節(jié)、熟悉vc++
1、VC是軟件,用來運(yùn)行寫的C語言程序。
2、每個(gè)C語言程序?qū)懲旰,都是先編譯,后鏈接,最后運(yùn)行。(.c—.obj—.exe)這個(gè)過程中注意.c和.obj文件時(shí)無法運(yùn)行的,只有.exe文件才可以運(yùn)行。(?迹。
第三節(jié)、標(biāo)識(shí)符
1、標(biāo)識(shí)符(必考內(nèi)容):
合法的要求是由字母,數(shù)字,下劃線組成。有其它元素就錯(cuò)了。
并且第一個(gè)必須為字母或則是下劃線。第一個(gè)為數(shù)字就錯(cuò)了
2、標(biāo)識(shí)符分為關(guān)鍵字、預(yù)定義標(biāo)識(shí)符、用戶標(biāo)識(shí)符。
關(guān)鍵字:不可以作為用戶標(biāo)識(shí)符號(hào)。main define scanf printf都不是關(guān)鍵字。迷惑你的地方If是可以做為用戶標(biāo)識(shí)符。因?yàn)镮f中的第一個(gè)字母大寫了,所以不是關(guān)鍵字。
預(yù)定義標(biāo)識(shí)符:背誦define scanf printf include。記住預(yù)定義標(biāo)識(shí)符可以做為用戶標(biāo)識(shí)符。
用戶標(biāo)識(shí)符:基本上每年都考,詳細(xì)請(qǐng)見書上習(xí)題。
第四節(jié):進(jìn)制的轉(zhuǎn)換
十進(jìn)制轉(zhuǎn)換成二進(jìn)制、八進(jìn)制、十六進(jìn)制。
二進(jìn)制、八進(jìn)制、十六進(jìn)制轉(zhuǎn)換成十進(jìn)制。
第五節(jié):整數(shù)與實(shí)數(shù)
1)C語言只有八、十、十六進(jìn)制,沒有二進(jìn)制。但是運(yùn)行時(shí)候,所有的進(jìn)制都要轉(zhuǎn)換成二進(jìn)制來進(jìn)行處理。(考過兩次)
a、C語言中的八進(jìn)制規(guī)定要以0開頭。018的數(shù)值是非法的,八進(jìn)制是沒有8的,逢8進(jìn)1。
b、C語言中的十六進(jìn)制規(guī)定要以0x開頭。
2)小數(shù)的合法寫法:C語言小數(shù)點(diǎn)兩邊有一個(gè)是零的話,可以不用寫。
1.0在C語言中可寫成1.
0.1在C語言中可以寫成.1。
3)實(shí)型數(shù)據(jù)的合法形式:
a、2.333e-1就是合法的,且數(shù)據(jù)是2.333×10-1。
b、考試口訣:e前e后必有數(shù),e后必為整數(shù)。請(qǐng)結(jié)合書上的例子。
4)整型一般是4個(gè)字節(jié),字符型是1個(gè)字節(jié),雙精度一般是8個(gè)字節(jié):
long int x;表示x是長(zhǎng)整型。
unsigned int x;表示x是無符號(hào)整型。
第六、七節(jié):算術(shù)表達(dá)式和賦值表達(dá)式
核心:表達(dá)式一定有數(shù)值!
1、算術(shù)表達(dá)式:+,-,*,/,%
考試一定要注意:“/”兩邊都是整型的話,結(jié)果就是一個(gè)整型。 3/2的結(jié)果就是1.
“/”如果有一邊是小數(shù),那么結(jié)果就是小數(shù)。 3/2.0的結(jié)果就是0.5
“%”符號(hào)請(qǐng)一定要注意是余數(shù),考試最容易算成了除號(hào)。)%符號(hào)兩邊要求是整數(shù)。不是整數(shù)就錯(cuò)了。[注意!!!]
2、賦值表達(dá)式:表達(dá)式數(shù)值是最左邊的數(shù)值,a=b=5;該表達(dá)式為5,常量不可以賦值。
1、int x=y=10:錯(cuò)啦,定義時(shí),不可以連續(xù)賦值。
2、int x,y;
x=y=10;對(duì)滴,定義完成后,可以連續(xù)賦值。
3、賦值的左邊只能是一個(gè)變量。
4、int x=7.7;對(duì)滴,x就是7
5、float y=7;對(duì)滴,x就是7.0
3、復(fù)合的賦值表達(dá)式:
int a=2;
a*=2+3;運(yùn)行完成后,a的值是12。
一定要注意,首先要在2+3的上面打上括號(hào)。變成(2+3)再運(yùn)算。
4、自加表達(dá)式:
自加、自減表達(dá)式:假設(shè)a=5,++a(是為6),a++(為5);
運(yùn)行的機(jī)理:++a是先把變量的數(shù)值加上1,然后把得到的數(shù)值放到變量a中,然后再用這個(gè)++a表達(dá)式的數(shù)值為6,而a++是先用該表達(dá)式的數(shù)值為5,然后再把a(bǔ)的數(shù)值加上1為6,
再放到變量a中。進(jìn)行了++a和a++后在下面的程序中再用到a的話都是變量a中的6了。
考試口訣:++在前先加后用,++在后先用后加。
5、逗號(hào)表達(dá)式:
優(yōu)先級(jí)別最低。表達(dá)式的數(shù)值逗號(hào)最右邊的那個(gè)表達(dá)式的數(shù)值。
。2,3,4)的表達(dá)式的數(shù)值就是4。
z=(2,3,4)(整個(gè)是賦值表達(dá)式)這個(gè)時(shí)候z的值為4。(有點(diǎn)難度哦!)
z= 2,3,4(整個(gè)是逗號(hào)表達(dá)式)這個(gè)時(shí)候z的值為2。
補(bǔ)充:
1、空語句不可以隨意執(zhí)行,會(huì)導(dǎo)致邏輯錯(cuò)誤。
2、注釋是最近幾年考試的重點(diǎn),注釋不是C語言,不占運(yùn)行時(shí)間,沒有分號(hào)。不可以嵌套!
3、強(qiáng)制類型轉(zhuǎn)換:
一定是(int)a不是int(a),注意類型上一定有括號(hào)的。
注意(int)(a+b)和(int)a+b的區(qū)別。前是把a(bǔ)+b轉(zhuǎn)型,后是把a(bǔ)轉(zhuǎn)型再加b。
4、三種取整丟小數(shù)的情況:
。、int a =1.6;
。、(int)a;
。、1/2;3/2;
第八節(jié)、字符
1)字符數(shù)據(jù)的合法形式::
‘1’是字符占一個(gè)字節(jié),”1”是字符串占兩個(gè)字節(jié)(含有一個(gè)結(jié)束符號(hào))。
‘0’的ASCII數(shù)值表示為48,’a’的ASCII數(shù)值是97,’A’的ASCII數(shù)值是65。
一般考試表示單個(gè)字符錯(cuò)誤的形式:’65’ “1”
字符是可以進(jìn)行算術(shù)運(yùn)算的,記。骸0’-0=48
大寫字母和小寫字母轉(zhuǎn)換的`方法:‘A’+32=’a’相互之間一般是相差32。
2)轉(zhuǎn)義字符:
轉(zhuǎn)義字符分為一般轉(zhuǎn)義字符、八進(jìn)制轉(zhuǎn)義字符、十六進(jìn)制轉(zhuǎn)義字符。
一般轉(zhuǎn)義字符:背誦/0、、 ’、 ”、 。
八進(jìn)制轉(zhuǎn)義字符:‘141’是合法的,前導(dǎo)的0是不能寫的。
十六進(jìn)制轉(zhuǎn)義字符:’x6d’才是合法的,前導(dǎo)的0不能寫,并且x是小寫。
3、字符型和整數(shù)是近親:兩個(gè)具有很大的相似之處
char a = 65 ;
printf(“%c”, a);得到的輸出結(jié)果:a
printf(“%d”, a);得到的輸出結(jié)果:65
第九節(jié)、位運(yùn)算
1)位運(yùn)算的考查:會(huì)有一到二題考試題目。
總的處理方法:幾乎所有的位運(yùn)算的題目都要按這個(gè)流程來處理(先把十進(jìn)制變成二進(jìn)制再變成十進(jìn)制)。
例1:char a = 6, b;
b = a<<2;這種題目的計(jì)算是先要把a(bǔ)的十進(jìn)制6化成二進(jìn)制,再做位運(yùn)算。
例2:一定要記住,異或的位運(yùn)算符號(hào)” ^ ”。0異或1得到1。
0異或0得到0。兩個(gè)女的生不出來。
考試記憶方法:一男(1)一女(0)才可以生個(gè)小孩(1)。
例3:在沒有舍去數(shù)據(jù)的時(shí)候,<<左移一位表示乘以2;>>右移一位表示除以2。
函數(shù)知識(shí)點(diǎn)總結(jié)9
課題
3.5正比例函數(shù)、反比例函數(shù)、一次函數(shù)和二次函數(shù)
教學(xué)目標(biāo)
1、掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)2、會(huì)用待定系數(shù)法確定函數(shù)的解析式
教學(xué)重點(diǎn)
掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)
教學(xué)難點(diǎn)
掌握正(反)比例函數(shù)、一次函數(shù)和二次函數(shù)的概念及其圖形和性質(zhì)
教學(xué)方法
講練結(jié)合法
教學(xué)過程
。↖)知識(shí)要點(diǎn)(見下表:)
第三章第29頁函數(shù)名稱解析式圖像正比例函數(shù)ykx(k0)0x反比例函數(shù)一次函數(shù)ykxb(k0)0x二次函數(shù)yax2bxc(a0)y0xy0xky(k0)xyxy0xyy0xy0xyk0k0k0k0k0k0a0a0圖像過點(diǎn)(0,0)及(1,k)的直線雙曲線,x軸、y軸是它的漸近線與直線ykx平行且過點(diǎn)(0,b)的直線拋物線定義域RxxR且xoyyR且yoRR4acb2a0時(shí),y,4aR值域R4acb2a0時(shí),y,4aba0時(shí),在-,上為增2a函數(shù),在,-單調(diào)性k0時(shí),在,0,k0時(shí)為增函數(shù)0,上為減函數(shù)k0時(shí),為增函數(shù)b上為減函數(shù)2ak0時(shí)為減函數(shù)k0時(shí),在,0,k0時(shí),為減函數(shù)0,上為增函數(shù)ba0時(shí),在-,上為減2a函數(shù),在,-b上為增函數(shù)2a奇偶性奇函數(shù)奇函數(shù)b=0時(shí)奇函數(shù)b=0時(shí)偶函數(shù)a0且x-ymin最值無無無b時(shí),2a24acb4ab時(shí),2a24acb4aa0且x-ymax
第三章第30頁b24acb2注:二次函數(shù)yaxbxca(x(a0))a(xm)(xn)2a4abb4acb2對(duì)稱軸x,頂點(diǎn)(,)
2a2a4a2拋物線與x軸交點(diǎn)坐標(biāo)(m,0),(n,0)(II)例題講解
例1、求滿足下列條件的二次函數(shù)的.解析式:(1)拋物線過點(diǎn)A(1,1),B(2,2),C(4,2)(2)拋物線的頂點(diǎn)為P(1,5)且過點(diǎn)Q(3,3)
(3)拋物線對(duì)稱軸是x2,它在x軸上截出的線段AB長(zhǎng)為2且拋物線過點(diǎn)(1,7)。2,
解:(1)設(shè)yax2bxc(a0),將A、B、C三點(diǎn)坐標(biāo)分別代入,可得方程組為
abc1a1解得b4yx24x24a2bc216a4bc2c2(2)設(shè)二次函數(shù)為ya(x1)25,將Q點(diǎn)坐標(biāo)代入,即a(31)253,得
a2,故y2(x1)252x24x3
。3)∵拋物線對(duì)稱軸為x2;
∴拋物線與x軸的兩個(gè)交點(diǎn)A、B應(yīng)關(guān)于x2對(duì)稱;∴由題設(shè)條件可得兩個(gè)交點(diǎn)坐標(biāo)分別為A(2∴可設(shè)函數(shù)解析式為:ya(x2代入方程可得a1
∴所求二次函數(shù)為yx24x2,
2,0)、B(222,0)
2)(x22)a(x2)22a,將(1,7)
5),例2:二次函數(shù)的圖像過點(diǎn)(0,8),(1,(4,0)
(1)求函數(shù)圖像的頂點(diǎn)坐標(biāo)、對(duì)稱軸、最值及單調(diào)區(qū)間(2)當(dāng)x取何值時(shí),①y≥0,②y(2)由y0可得x22x80,解得x4或x2由y0可得x22x80,解得2x4
例3:求函數(shù)f(x)x2x1,x[1,1]的最值及相應(yīng)的x值
113x1(x)2,知函數(shù)的圖像開口向上,對(duì)稱軸為x
224111]上是增函數(shù)!嘁李}設(shè)條件可得f(x)在[1,]上是減函數(shù),在[,22131]時(shí),函數(shù)取得最小值,且ymin∴當(dāng)x[1,24131又∵11
函數(shù)知識(shí)點(diǎn)總結(jié)10
一次函數(shù)的圖象與性質(zhì)的口訣:
一次函數(shù)是直線,圖象經(jīng)過三象限;
正比例函數(shù)更簡(jiǎn)單,經(jīng)過原點(diǎn)一直線;
兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與y軸來相見,k為正來右上斜,x增減y增減;
k為負(fù)來左下展,變化規(guī)律正相反;
k的絕對(duì)值越大,線離橫軸就越遠(yuǎn)。
拓展閱讀:一次函數(shù)的解題方法
理解一次函數(shù)和其它知識(shí)的聯(lián)系
一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時(shí),等號(hào)的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個(gè)變量,而代數(shù)式可以是多個(gè)變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。
掌握一次函數(shù)的解析式的特征
一次函數(shù)解析式的結(jié)構(gòu)特征:kx+b是關(guān)于x的一次二項(xiàng)式,其中常數(shù)b可以是任意實(shí)數(shù),一次項(xiàng)系數(shù)k必須是非零數(shù),k≠0,因?yàn)楫?dāng)k = 0時(shí),y = b(b是常數(shù)),由于沒有一次項(xiàng),這樣的函數(shù)不是一次函數(shù);而當(dāng)b = 0,k≠0,y = kx既是正比例函數(shù),也是一次函數(shù)。
應(yīng)用一次函數(shù)解決實(shí)際問題
1、分清哪些是已知量,哪些是未知量,尤其要弄清哪兩種量是相關(guān)聯(lián)的量,且其中一種量因另一種量的變化而變化;
2、找出具有相關(guān)聯(lián)的兩種量的等量關(guān)系之后,明確哪種量是另一種量的函數(shù);
3、在實(shí)際問題中,一般存在著三種量,如距離、時(shí)間、速度等等,在這三種量中,當(dāng)且僅當(dāng)其中一種量時(shí)間(或速度)不變時(shí),距離與速度(或時(shí)間)才成正比例,也就是說,距離(s)是時(shí)間(t)或速度( )的正比例函數(shù);
4、求一次函數(shù)與正比例函數(shù)的關(guān)系式,一般采取待定系數(shù)法。
數(shù)形結(jié)合
方程,不等式,不等式組,方程組我們都可以用一次函數(shù)的觀點(diǎn)來理解。一元一次不等式實(shí)際上就看兩條直線上下方的關(guān)系,求出端點(diǎn)后可以很容易把握解集,至于一元一次方程可以把左右兩邊看為兩條直線來認(rèn)識(shí),直線交點(diǎn)的橫坐標(biāo)就是方程的解,至于二元一次方程組就是對(duì)應(yīng)2條直線,方程組的解就是直線的交點(diǎn),結(jié)合圖形可以認(rèn)識(shí)兩直線的位置關(guān)系也可以把握交點(diǎn)個(gè)數(shù)。
如果一個(gè)交點(diǎn)時(shí)候兩條直線的k不同,如果無窮個(gè)交點(diǎn)就是k,b都一樣,如果平行無交點(diǎn)就是k相同,b不一樣。至于函數(shù)平移的問題可以化歸為對(duì)應(yīng)點(diǎn)平移。k反正不變?nèi)缓笥么ㄏ禂?shù)法得到平移后的方程。這就是化一般為特殊的解題方法。
數(shù)學(xué)解題方法分別有哪些
1、配方法
所謂的公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個(gè)或多個(gè)多項(xiàng)式正整數(shù)冪的和形式。通過配方解決數(shù)學(xué)問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學(xué)中不斷變形的重要方法,其應(yīng)用非常廣泛,在分解,簡(jiǎn)化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達(dá)式。
2、因式分解法
因式分解是將多項(xiàng)式轉(zhuǎn)換為幾個(gè)積分產(chǎn)品的乘積。分解是恒定變形的基礎(chǔ)。除了引入中學(xué)教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項(xiàng)目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。
3、換元法
替代方法是數(shù)學(xué)中一個(gè)非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變?cè)。用新的參?shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡(jiǎn)單,更容易解決。
4、判別式法與韋達(dá)定理
一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來確定根的性質(zhì),還作為一個(gè)問題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應(yīng)用。
韋達(dá)定理除了知道二次方程的根外,還找到另一根;考慮到兩個(gè)數(shù)的和和乘積的簡(jiǎn)單應(yīng)用并尋找這兩個(gè)數(shù),也可以找到根的對(duì)稱函數(shù)并量化二次方程根的符號(hào)。求解對(duì)稱方程并解決一些與二次曲線有關(guān)的問題等,具有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解決數(shù)學(xué)問題時(shí),如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關(guān)系。為了解決數(shù)學(xué)問題,這種問題解決方法被稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解決問題時(shí),我們通常通過分析條件和結(jié)論來使用這些方法來構(gòu)建輔助元素。它可以是一個(gè)圖表,一個(gè)方程(組),一個(gè)方程,一個(gè)函數(shù),一個(gè)等價(jià)的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個(gè)問題,這種解決問題的數(shù)學(xué)方法,我們稱之為構(gòu)造方法。運(yùn)用結(jié)構(gòu)方法解決問題可以使代數(shù),三角形,幾何等數(shù)學(xué)知識(shí)相互滲透,有助于解決問題。
數(shù)學(xué)經(jīng)常遇到的問題解答
1、要提高數(shù)學(xué)成績(jī)首先要做什么?
這一點(diǎn),是很多學(xué)生所關(guān)注的,要提高數(shù)學(xué)成績(jī),首先就應(yīng)該從基礎(chǔ)知識(shí)學(xué)起。不少同學(xué)覺得基礎(chǔ)知識(shí)過于簡(jiǎn)單,看兩遍基本上就都會(huì)了。這種“自我感覺良好”其實(shí)是一種錯(cuò)覺,而真正考試時(shí)又覺得無從下手,這還是基礎(chǔ)不牢的表現(xiàn),因此要提高數(shù)學(xué)成績(jī)先要把基礎(chǔ)夯實(shí)。
2、基礎(chǔ)不好怎么學(xué)好數(shù)學(xué)?
對(duì)于基礎(chǔ)差的同學(xué)來說,課本是就是學(xué)好數(shù)學(xué)的秘籍,把課本上的定義、公式、定理全部弄懂,力爭(zhēng)在理解的基礎(chǔ)上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學(xué)活用,把課本的知識(shí)學(xué)透有兩個(gè)好處,第一,強(qiáng)化基礎(chǔ);第二,提高得分能力。
3、是否要采用題海戰(zhàn)術(shù)?
方法君曾不止一次提到了“題海戰(zhàn)術(shù)”,題海戰(zhàn)術(shù)究竟可不可取呢?“題海戰(zhàn)術(shù)”其實(shí)也是一種學(xué)習(xí)方法,但很多學(xué)生只知道做題,不懂得總結(jié),體現(xiàn)不出任何的學(xué)習(xí)效果。因此在做題后要總結(jié)至關(guān)重要,只有認(rèn)真總結(jié)才能不斷積累做題經(jīng)驗(yàn),這樣才能取得理想成績(jī)。
4、做題總是粗心怎么辦?
很多學(xué)生成績(jī)不好,會(huì)說自己是因?yàn)榇中膶?dǎo)致的,其實(shí)“粗心”只是借口,真正的原因就是題做得少、基礎(chǔ)知識(shí)不牢、沒有清晰的解題思路、計(jì)算能力不強(qiáng)。因此在平時(shí)的學(xué)習(xí)中,一定要注重熟練度和精準(zhǔn)度的練習(xí)。如果總是給自己找“粗心”的借口,也就變相否定了自己的學(xué)習(xí)弱點(diǎn),所以,要告訴自己,高中數(shù)學(xué)沒有“粗心”只有“不用心”。
為什么要學(xué)習(xí)數(shù)學(xué)
作為一門普及度極廣的學(xué)科,數(shù)學(xué)在人類文明的發(fā)展史上一直占據(jù)著重要的`地位。雖然很多人可能會(huì)對(duì)數(shù)學(xué)產(chǎn)生排斥,認(rèn)為它枯燥無味,但事實(shí)上,數(shù)學(xué)是所有學(xué)科的基石之一,對(duì)我們?nèi)粘I钜约拔磥淼穆殬I(yè)發(fā)展有著重大影響。下面我將詳細(xì)闡述學(xué)習(xí)數(shù)學(xué)的重要性。
首先,數(shù)學(xué)可以幫助我們提高邏輯思維能力。數(shù)學(xué)的學(xué)科性質(zhì)使我們?cè)趯W(xué)習(xí)的過程中時(shí)時(shí)刻刻面臨著思考、推理、證明等諸多問題,而這些問題正是鍛煉我們邏輯思維的好機(jī)會(huì)。通過長(zhǎng)期的學(xué)習(xí)和練習(xí),我們的思維能力得到提升,可以更加清晰地分析問題,更快速地找到正確的答案。這對(duì)我們?cè)诠ぷ骱蜕钪卸挤浅S袔椭,尤其是在解決復(fù)雜問題時(shí)更能得心應(yīng)手。
其次,數(shù)學(xué)在現(xiàn)代科技中起著至關(guān)重要的作用。在計(jì)算機(jī)科學(xué)、物理學(xué)、經(jīng)濟(jì)學(xué)、工程學(xué)等領(lǐng)域,數(shù)學(xué)可以幫助我們建立模型、分析數(shù)據(jù)、預(yù)測(cè)趨勢(shì),并且可以在實(shí)際應(yīng)用中優(yōu)化和改進(jìn)。例如,在人工智能領(lǐng)域,深度學(xué)習(xí)技術(shù)所涉及的數(shù)學(xué)概念包括線性代數(shù)、微積分和概率論等,如果沒有深厚的數(shù)學(xué)基礎(chǔ),很難理解和應(yīng)用這些技術(shù)。同時(shí),在工程學(xué)領(lǐng)域,許多機(jī)械、電子、化工等產(chǎn)品的設(shè)計(jì)和制造過程,也需要運(yùn)用到數(shù)學(xué)知識(shí),因此學(xué)習(xí)數(shù)學(xué)可以使我們更好地參與到現(xiàn)代科技的發(fā)展中。
除此之外,數(shù)學(xué)也是一種普遍使用的語言,許多學(xué)科和領(lǐng)域都使用數(shù)學(xué)語言進(jìn)行表達(dá)和交流。例如,在自然科學(xué)領(lǐng)域,生物學(xué)、化學(xué)、物理學(xué)等學(xué)科都使用數(shù)學(xué)語言來描述自然世界的規(guī)律和現(xiàn)象。在社會(huì)科學(xué)和商科領(lǐng)域,經(jīng)濟(jì)學(xué)和金融學(xué)運(yùn)用的數(shù)學(xué)概念,如微積分、線性代數(shù)和統(tǒng)計(jì)學(xué)等,使得我們能夠更好地理解經(jīng)濟(jì)和財(cái)務(wù)數(shù)據(jù),并進(jìn)行決策。因此,學(xué)習(xí)數(shù)學(xué)可以讓我們更好地理解、溝通和交流各個(gè)領(lǐng)域的知識(shí)。
最后,學(xué)習(xí)數(shù)學(xué)也可以為我們的職業(yè)發(fā)展帶來廣泛的機(jī)遇和發(fā)展空間。在許多領(lǐng)域,數(shù)學(xué)專業(yè)的畢業(yè)生都有很廣泛的就業(yè)機(jī)會(huì),如金融界、數(shù)據(jù)科學(xué)、研究機(jī)構(gòu)、教育等。數(shù)學(xué)專業(yè)的人才,不只會(huì)提供理論支持,同時(shí)也能夠解決現(xiàn)實(shí)中具體的問題,使其在各自領(lǐng)域脫穎而出。
函數(shù)知識(shí)點(diǎn)總結(jié)11
一、二次函數(shù)概念:
a0)b,c是常數(shù)
1.二次函數(shù)的概念:一般地,形如yax2bxc(a,的函數(shù),叫做二次函數(shù)。這c可以為零.二次函數(shù)的定義域是全體實(shí)里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù)a0,而b,數(shù).
2.二次函數(shù)yax2bxc的結(jié)構(gòu)特征:
⑴等號(hào)左邊是函數(shù),右邊是關(guān)于自變量x的二次式,x的最高次數(shù)是2.b,c是常數(shù),a是二次項(xiàng)系數(shù),b是一次項(xiàng)系數(shù),c是常數(shù)項(xiàng).
⑵a,二、二次函數(shù)的基本形式
1.二次函數(shù)基本形式:yax2的性質(zhì):a的絕對(duì)值越大,拋物線的開口越小。
a的符號(hào)a0開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上00,00,性質(zhì)x0時(shí),y隨x的增大而增大;x0時(shí),y隨y軸x的增大而減。粁0時(shí),y有最小值0.x0時(shí),y隨x的增大而減。粁0時(shí),y隨a0向下y軸x的增大而增大;x0時(shí),y有最大值0.
2.yax2c的性質(zhì):上加下減。
a的符號(hào)a0開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上c0,c0,性質(zhì)x0時(shí),y隨x的增大而增大;x0時(shí),y隨y軸x的增大而減;x0時(shí),y有最小值c.x0時(shí),y隨x的增大而減;x0時(shí),y隨a0向下y軸x的增大而增大;x0時(shí),y有最大值c.
3.yaxh的性質(zhì):左加右減。
2a的符號(hào)a0開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸向上0h,0h,性質(zhì)xh時(shí),y隨x的增大而增大;xh時(shí),y隨X=hx的增大而減小;xh時(shí),y有最小值0.xh時(shí),y隨x的增大而減。粁h時(shí),y隨a02向下X=hx的增大而增大;xh時(shí),y有最大值0.
4.yaxhk的.性質(zhì):
a的符號(hào)開口方向頂點(diǎn)坐標(biāo)對(duì)稱軸性質(zhì)a0向上h,kh,kX=hxh時(shí),y隨x的增大而增大;xh時(shí),y隨x的增大而減;xh時(shí),y有最小值k.xh時(shí),y隨x的增大而減。粁h時(shí),y隨a0向下X=hx的增大而增大;xh時(shí),y有最大值k.
三、二次函數(shù)圖象的平移
1.平移步驟:
方法一:
、艑佄锞解析式轉(zhuǎn)化成頂點(diǎn)式y(tǒng)axhk,確定其頂點(diǎn)坐標(biāo)h,k;
⑵保持拋物線yax2的形狀不變,將其頂點(diǎn)平移到h,k處,具體平移方法如下:
向上(k>0)【或向下(k0)【或左(h0)【或左(h0)【或下(k0)【或左(h0)【或下(k
畫草圖時(shí)應(yīng)抓住以下幾點(diǎn):開口方向,對(duì)稱軸,頂點(diǎn),與x軸的交點(diǎn),與y軸的交點(diǎn).
六、二次函數(shù)yax2bxc的性質(zhì)
b4acb2b1.當(dāng)a0時(shí),拋物線開口向上,對(duì)稱軸為x,頂點(diǎn)坐標(biāo)為,.
2a4a2a當(dāng)xbbb時(shí),y隨x的增大而減。划(dāng)x時(shí),y隨x的增大而增大;當(dāng)x時(shí),y有最小2a2a2a4acb2值.
4ab4acb2bb2.當(dāng)a0時(shí),拋物線開口向下,對(duì)稱軸為x,頂點(diǎn)坐標(biāo)為,時(shí),y隨.當(dāng)x2a4a2a2a4acb2bb.x的增大而增大;當(dāng)x時(shí),y隨x的增大而減;當(dāng)x時(shí),y有最大值
2a2a4a
七、二次函數(shù)解析式的表示方法
1.一般式:yax2bxc(a,b,c為常數(shù),a0);
2.頂點(diǎn)式:ya(xh)2k(a,h,k為常數(shù),a0);
3.兩根式:ya(xx1)(xx2)(a0,x1,x2是拋物線與x軸兩交點(diǎn)的橫坐標(biāo)).
注意:任何二次函數(shù)的解析式都可以化成一般式或頂點(diǎn)式,但并非所有的二次函數(shù)都可以寫成交點(diǎn)式,只有拋物線與x軸有交點(diǎn),即b24ac0時(shí),拋物線的解析式才可以用交點(diǎn)式表示.二次函數(shù)解析式的這三種形式可以互化.
八、二次函數(shù)的圖象與各項(xiàng)系數(shù)之間的關(guān)系
1.二次項(xiàng)系數(shù)a
二次函數(shù)yax2bxc中,a作為二次項(xiàng)系數(shù),顯然a0.
、女(dāng)a0時(shí),拋物線開口向上,a的值越大,開口越小,反之a(chǎn)的值越小,開口越大;
、飘(dāng)a0時(shí),拋物線開口向下,a的值越小,開口越小,反之a(chǎn)的值越大,開口越大.
總結(jié)起來,a決定了拋物線開口的大小和方向,a的正負(fù)決定開口方向,a的大小決定開口的大。
2.一次項(xiàng)系數(shù)b
在二次項(xiàng)系數(shù)a確定的前提下,b決定了拋物線的對(duì)稱軸.
、旁赼0的前提下,當(dāng)b0時(shí),當(dāng)b0時(shí),當(dāng)b0時(shí),b0,即拋物線的對(duì)稱軸在y軸左側(cè);2ab0,即拋物線的對(duì)稱軸就是y軸;2ab0,即拋物線對(duì)稱軸在y軸的右側(cè).2a⑵在a0的前提下,結(jié)論剛好與上述相反,即當(dāng)b0時(shí),當(dāng)b0時(shí),當(dāng)b0時(shí),b0,即拋物線的對(duì)稱軸在y軸右側(cè);2ab0,即拋物線的對(duì)稱軸就是y軸;2ab0,即拋物線對(duì)稱軸在y軸的左側(cè).2a
總結(jié)起來,在a確定的前提下,b決定了拋物線對(duì)稱軸的位置.
ab的符號(hào)的判定:對(duì)稱軸xb在y軸左邊則ab0,在y軸的右側(cè)則ab0,概括的說就是“左同2a右異”總結(jié):
3.常數(shù)項(xiàng)c
、女(dāng)c0時(shí),拋物線與y軸的交點(diǎn)在x軸上方,即拋物線與y軸交點(diǎn)的縱坐標(biāo)為正;
、飘(dāng)c0時(shí),拋物線與y軸的交點(diǎn)為坐標(biāo)原點(diǎn),即拋物線與y軸交點(diǎn)的縱坐標(biāo)為0;
、钱(dāng)c0時(shí),拋物線與y軸的交點(diǎn)在x軸下方,即拋物線與y軸交點(diǎn)的縱坐標(biāo)為負(fù).總結(jié)起來,c決定了拋物線與y軸交點(diǎn)的位置.
b,c都確定,那么這條拋物線就是唯一確定的.總之,只要a,二次函數(shù)解析式的確定:
根據(jù)已知條件確定二次函數(shù)解析式,通常利用待定系數(shù)法.用待定系數(shù)法求二次函數(shù)的解析式必須根據(jù)題目的特點(diǎn),選擇適當(dāng)?shù)男问剑拍苁菇忸}簡(jiǎn)便.一般來說,有如下幾種情況:
1.已知拋物線上三點(diǎn)的坐標(biāo),一般選用一般式;
2.已知拋物線頂點(diǎn)或?qū)ΨQ軸或最大(。┲担话氵x用頂點(diǎn)式;
3.已知拋物線與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo),一般選用兩根式;
4.已知拋物線上縱坐標(biāo)相同的兩點(diǎn),常選用頂點(diǎn)式.
九、二次函數(shù)圖象的對(duì)稱
二次函數(shù)圖象的對(duì)稱一般有五種情況,可以用一般式或頂點(diǎn)式表達(dá)
1.關(guān)于x軸對(duì)稱
yax2bxc關(guān)于x軸對(duì)稱后,得到的解析式是yax2bxc;
yaxhk關(guān)于x軸對(duì)稱后,得到的解析式是yaxhk;
2.關(guān)于y軸對(duì)稱
yax2bxc關(guān)于y軸對(duì)稱后,得到的解析式是yax2bxc;
22yaxhk關(guān)于y軸對(duì)稱后,得到的解析式是yaxhk;
3.關(guān)于原點(diǎn)對(duì)稱
yax2bxc關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是yax2bxc;yaxhk關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是yaxhk;
4.關(guān)于頂點(diǎn)對(duì)稱(即:拋物線繞頂點(diǎn)旋轉(zhuǎn)180°)
2222b2yaxbxc關(guān)于頂點(diǎn)對(duì)稱后,得到的解析式是yaxbxc;
2a22yaxhk關(guān)于頂點(diǎn)對(duì)稱后,得到的解析式是yaxhk.n對(duì)稱
5.關(guān)于點(diǎn)m,n對(duì)稱后,得到的解析式是yaxh2m2nkyaxhk關(guān)于點(diǎn)m,根據(jù)對(duì)稱的性質(zhì),顯然無論作何種對(duì)稱變換,拋物線的形狀一定不會(huì)發(fā)生變化,因此a永遠(yuǎn)不變.求拋物線的對(duì)稱拋物線的表達(dá)式時(shí),可以依據(jù)題意或方便運(yùn)算的原則,選擇合適的形式,習(xí)慣上是先確定原拋物線(或表達(dá)式已知的拋物線)的頂點(diǎn)坐標(biāo)及開口方向,再確定其對(duì)稱拋物線的頂點(diǎn)坐標(biāo)及開口方向,然后再寫出其對(duì)稱拋物線的表達(dá)式.
十、二次函數(shù)與一元二次方程:
1.二次函數(shù)與一元二次方程的關(guān)系(二次函數(shù)與x軸交點(diǎn)情況):
一元二次方程ax2bxc0是二次函數(shù)yax2bxc當(dāng)函數(shù)值y0時(shí)的特殊情況.圖象與x軸的交點(diǎn)個(gè)數(shù):
、佼(dāng)b24ac0時(shí),圖象與x軸交于兩點(diǎn)Ax1,0,Bx2,0(x1x2),其中的x1,x2是一元二次
b24ac方程axbxc0a0的兩根.這兩點(diǎn)間的距離ABx2x1.
a2
、诋(dāng)0時(shí),圖象與x軸只有一個(gè)交點(diǎn);
、郛(dāng)0時(shí),圖象與x軸沒有交點(diǎn).
1"當(dāng)a0時(shí),圖象落在x軸的上方,無論x為任何實(shí)數(shù),都有y0;
2"當(dāng)a0時(shí),圖象落在x軸的下方,無論x為任何實(shí)數(shù),都有y0.
2.拋物線yax2bxc的圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);
3.二次函數(shù)常用解題方法總結(jié):
⑴求二次函數(shù)的圖象與x軸的交點(diǎn)坐標(biāo),需轉(zhuǎn)化為一元二次方程;
、魄蠖魏瘮(shù)的最大(。┲敌枰门浞椒▽⒍魏瘮(shù)由一般式轉(zhuǎn)化為頂點(diǎn)式;
⑶根據(jù)圖象的位置判斷二次函數(shù)yax2bxc中a,b,c的符號(hào),或由二次函數(shù)中a,b,c的符號(hào)判斷圖象的位置,要數(shù)形結(jié)合;
、榷魏瘮(shù)的圖象關(guān)于對(duì)稱軸對(duì)稱,可利用這一性質(zhì),求和已知一點(diǎn)對(duì)稱的點(diǎn)坐標(biāo),或已知與x軸的一個(gè)交點(diǎn)坐標(biāo),可由對(duì)稱性求出另一個(gè)交點(diǎn)坐標(biāo).
、膳c二次函數(shù)有關(guān)的還有二次三項(xiàng)式,二次三項(xiàng)式ax2bxc(a0)本身就是所含字母x的二次函數(shù);下面以a0時(shí)為例,揭示二次函數(shù)、二次三項(xiàng)式和一元二次方程之間的內(nèi)在聯(lián)系:
0拋物線與x軸有兩個(gè)交點(diǎn)0二次三項(xiàng)式的值可正、可零、可負(fù)二次三項(xiàng)式的值為非負(fù)二次三項(xiàng)式的值恒為正一元二次方程有兩個(gè)不相等實(shí)根一元二次方程有兩個(gè)相等的實(shí)數(shù)根一元二次方程無實(shí)數(shù)根.0拋物線與x軸只有一個(gè)交點(diǎn)拋物線與x軸無交點(diǎn)y=2x2y=x2y=3(x+4)2二次函數(shù)圖像參考:
y=3x2y=3(x-2)2y=x22
y=2x2y=2(x-4)2y=2(x-4)2-3y=2x2+2y=2x2y=2x2-4x2y=-2y=-x2y=-2x2十一、函數(shù)的應(yīng)用
剎車距離二次函數(shù)應(yīng)用何時(shí)獲得最大利潤(rùn)
最大面積是多少y=-2(x+3)2y=-2x2y=-2(x-3)2
函數(shù)知識(shí)點(diǎn)總結(jié)12
誘導(dǎo)公式的本質(zhì)
所謂三角函數(shù)誘導(dǎo)公式,就是將角n(/2)的三角函數(shù)轉(zhuǎn)化為角的三角函數(shù)。
常用的誘導(dǎo)公式
公式一: 設(shè)為任意角,終邊相同的角的同一三角函數(shù)的值相等:
sin(2k)=sin kz
cos(2k)=cos kz
tan(2k)=tan kz
cot(2k)=cot kz
公式二: 設(shè)為任意角,的三角函數(shù)值與的三角函數(shù)值之間的.關(guān)系:
sin()=-sin
cos()=-cos
tan()=tan
cot()=cot
公式三: 任意角與 -的三角函數(shù)值之間的關(guān)系:
sin(-)=-sin
cos(-)=cos
tan(-)=-tan
cot(-)=-cot
公式四: 利用公式二和公式三可以得到與的三角函數(shù)值之間的關(guān)系:
sin()=sin
cos()=-cos
tan()=-tan
cot()=-cot
函數(shù)知識(shí)點(diǎn)總結(jié)13
首先,把主要精力放在基礎(chǔ)知識(shí)、基本技能、基本方法這三個(gè)方面上、因?yàn)槊看慰荚囌冀^大部分的是基礎(chǔ)性的題目,而對(duì)于那些難題及綜合性較強(qiáng)的題目作為調(diào)劑,認(rèn)真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納,調(diào)整好自己的心態(tài),使自己在任何時(shí)候鎮(zhèn)靜,思路有條不紊,克服浮躁情緒、特別是對(duì)自己要有信心,永遠(yuǎn)鼓勵(lì)自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能把我打垮的自豪感、
在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開,切忌考前在保證正確率的`前提下提高解題速度、對(duì)于一些容易的基礎(chǔ)題,要有十二分的把握拿滿分;對(duì)于一些難題,也要盡量拿分,考試中要嘗試得分,使自己的水平正常甚至超常發(fā)揮、
要想學(xué)好初中數(shù)學(xué),多做題目是難免的,熟悉掌握各種題型的解題思路、剛開始要以基礎(chǔ)題目入手,以課上的題目為準(zhǔn),提高自己的分析解決能力,掌握一般的解題思路、對(duì)于一些易錯(cuò)題,可備有錯(cuò)題集,寫出自己的解題思路、正確的解題過程,兩者一起比較找出自己的錯(cuò)誤所在,以便及時(shí)更正、在平時(shí)養(yǎng)成良好的解題習(xí)慣、讓自己的精力高度集中,使大腦興奮思維敏捷,能夠進(jìn)入最佳狀態(tài),在考試中能運(yùn)用自如、實(shí)踐證明:越到關(guān)鍵的時(shí)候,你所表現(xiàn)的解題習(xí)慣與平時(shí)解題無異、如果平時(shí)解題時(shí)隨便、粗心、大意等,往往在大考中充分暴露,故在平時(shí)養(yǎng)成良好的解題習(xí)慣是非常重要的、
初中數(shù)學(xué)解題方法
第一點(diǎn):卓絕點(diǎn):熟悉數(shù)學(xué)習(xí)題中常設(shè)計(jì)的內(nèi)容,定義、公式、原理等等
第二點(diǎn):做題有步驟,先易后難
初中數(shù)學(xué)做題技巧有一點(diǎn),那就是先易后難、正所謂“一屋不掃何以掃天下?”,如果同學(xué)們連那些簡(jiǎn)單容易的數(shù)學(xué)題目都解答不出來又怎么能夠解答那些疑難的數(shù)學(xué)題目呢?先易后難的做數(shù)學(xué)題目不僅能夠增加同學(xué)們做數(shù)學(xué)題的信心,還能夠讓同學(xué)享受解答數(shù)學(xué)題的那個(gè)過程、
第三點(diǎn):認(rèn)真做好歸納總結(jié)
函數(shù)知識(shí)點(diǎn)總結(jié)14
。ㄒ唬、映射、函數(shù)、反函數(shù)
1、對(duì)應(yīng)、映射、函數(shù)三個(gè)概念既有共性又有區(qū)別,映射是一種特殊的對(duì)應(yīng),而函數(shù)又是一種特殊的映射。
2、對(duì)于函數(shù)的概念,應(yīng)注意如下幾點(diǎn):
。1)掌握構(gòu)成函數(shù)的三要素,會(huì)判斷兩個(gè)函數(shù)是否為同一函數(shù)。
。2)掌握三種表示法——列表法、解析法、圖象法,能根實(shí)際問題尋求變量間的函數(shù)關(guān)系式,特別是會(huì)求分段函數(shù)的解析式。
。3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的復(fù)合函數(shù),其中g(shù)(x)為內(nèi)函數(shù),f(u)為外函數(shù)。
3、求函數(shù)y=f(x)的反函數(shù)的一般步驟:
。1)確定原函數(shù)的值域,也就是反函數(shù)的定義域;
(2)由y=f(x)的解析式求出x=f—1(y);
。3)將x,y對(duì)換,得反函數(shù)的習(xí)慣表達(dá)式y(tǒng)=f—1(x),并注明定義域。
注意:
①對(duì)于分段函數(shù)的反函數(shù),先分別求出在各段上的反函數(shù),然后再合并到一起。
、谑煜さ膽(yīng)用,求f—1(x0)的值,合理利用這個(gè)結(jié)論,可以避免求反函數(shù)的過程,從而簡(jiǎn)化運(yùn)算。
(二)、函數(shù)的解析式與定義域
1、函數(shù)及其定義域是不可分割的整體,沒有定義域的函數(shù)是不存在的,因此,要正確地寫出函數(shù)的解析式,必須是在求出變量間的對(duì)應(yīng)法則的同時(shí),求出函數(shù)的定義域。求函數(shù)的定義域一般有三種類型:
。1)有時(shí)一個(gè)函數(shù)來自于一個(gè)實(shí)際問題,這時(shí)自變量x有實(shí)際意義,求定義域要結(jié)合實(shí)際意義考慮;
(2)已知一個(gè)函數(shù)的解析式求其定義域,只要使解析式有意義即可。如:
、俜质降姆帜覆坏脼榱;
、谂即畏礁谋婚_方數(shù)不小于零;
、蹖(duì)數(shù)函數(shù)的真數(shù)必須大于零;
④指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的底數(shù)必須大于零且不等于1;
、萑呛瘮(shù)中的正切函數(shù)y=tanx(x∈R,且k∈Z),余切函數(shù)y=cotx(x∈R,x≠kπ,k∈Z)等。
應(yīng)注意,一個(gè)函數(shù)的解析式由幾部分組成時(shí),定義域?yàn)楦鞑糠钟幸饬x的自變量取值的公共部分(即交集)。
。3)已知一個(gè)函數(shù)的定義域,求另一個(gè)函數(shù)的定義域,主要考慮定義域的深刻含義即可。
已知f(x)的定義域是[a,b],求f[g(x)]的定義域是指滿足a≤g(x)≤b的x的取值范圍,而已知f[g(x)]的定義域[a,b]指的是x∈[a,b],此時(shí)f(x)的定義域,即g(x)的值域。
2、求函數(shù)的解析式一般有四種情況
(1)根據(jù)某實(shí)際問題需建立一種函數(shù)關(guān)系時(shí),必須引入合適的變量,根據(jù)數(shù)學(xué)的有關(guān)知識(shí)尋求函數(shù)的解析式。
。2)有時(shí)題設(shè)給出函數(shù)特征,求函數(shù)的解析式,可采用待定系數(shù)法。比如函數(shù)是一次函數(shù),可設(shè)f(x)=ax+b(a≠0),其中a,b為待定系數(shù),根據(jù)題設(shè)條件,列出方程組,求出a,b即可。
。3)若題設(shè)給出復(fù)合函數(shù)f[g(x)]的表達(dá)式時(shí),可用換元法求函數(shù)f(x)的表達(dá)式,這時(shí)必須求出g(x)的值域,這相當(dāng)于求函數(shù)的定義域。
。4)若已知f(x)滿足某個(gè)等式,這個(gè)等式除f(x)是未知量外,還出現(xiàn)其他未知量(如f(—x),等),必須根據(jù)已知等式,再構(gòu)造其他等式組成方程組,利用解方程組法求出f(x)的表達(dá)式。
。ㄈ、函數(shù)的值域與最值
1、函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:
(1)直接法:亦稱觀察法,對(duì)于結(jié)構(gòu)較為簡(jiǎn)單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域。
。2)換元法:運(yùn)用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡(jiǎn)單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時(shí)用代數(shù)換元,當(dāng)根式里是二次式時(shí),用三角換元。
。3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f—1(x)的定義域和值域間的關(guān)系,通過求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得。
(4)配方法:對(duì)于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問題可考慮用配方法。
。5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過應(yīng)注意條件“一正二定三相等”有時(shí)需用到平方等技巧。
。6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域。其題型特征是解析式中含有根式或分式。
。7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個(gè)定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域。
。8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域。
2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系
求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值。因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的,只是提問的角度不同,因而答題的方式就有所相異。
如函數(shù)的值域是(0,16],最大值是16,無最小值。再如函數(shù)的值域是(—∞,—2]∪[2,+∞),但此函數(shù)無最大值和最小值,只有在改變函數(shù)定義域后,如x>0時(shí),函數(shù)的最小值為2?梢姸x域?qū)瘮?shù)的值域或最值的影響。
3、函數(shù)的最值在實(shí)際問題中的應(yīng)用
函數(shù)的.最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識(shí)求解實(shí)際問題上,從文字表述上常常表現(xiàn)為“工程造價(jià)最低”,“利潤(rùn)最大”或“面積(體積)最大(最。钡戎T多現(xiàn)實(shí)問題上,求解時(shí)要特別關(guān)注實(shí)際意義對(duì)自變量的制約,以便能正確求得最值。
(四)、函數(shù)的奇偶性
1、函數(shù)的奇偶性的定義:對(duì)于函數(shù)f(x),如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(—x)=—f(x)(或f(—x)=f(x)),那么函數(shù)f(x)就叫做奇函數(shù)(或偶函數(shù))。
正確理解奇函數(shù)和偶函數(shù)的定義,要注意兩點(diǎn):(1)定義域在數(shù)軸上關(guān)于原點(diǎn)對(duì)稱是函數(shù)f(x)為奇函數(shù)或偶函數(shù)的必要不充分條件;(2)f(x)=—f(x)或f(—x)=f(x)是定義域上的恒等式。(奇偶性是函數(shù)定義域上的整體性質(zhì))。
2、奇偶函數(shù)的定義是判斷函數(shù)奇偶性的主要依據(jù)。為了便于判斷函數(shù)的奇偶性,有時(shí)需要將函數(shù)化簡(jiǎn)或應(yīng)用定義的等價(jià)形式:
注意如下結(jié)論的運(yùn)用:
(1)不論f(x)是奇函數(shù)還是偶函數(shù),f(|x|)總是偶函數(shù);
(2)f(x)、g(x)分別是定義域D1、D2上的奇函數(shù),那么在D1∩D2上,f(x)+g(x)是奇函數(shù),f(x)·g(x)是偶函數(shù),類似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;
。3)奇偶函數(shù)的復(fù)合函數(shù)的奇偶性通常是偶函數(shù);
。4)奇函數(shù)的導(dǎo)函數(shù)是偶函數(shù),偶函數(shù)的導(dǎo)函數(shù)是奇函數(shù)。
3、有關(guān)奇偶性的幾個(gè)性質(zhì)及結(jié)論
(1)一個(gè)函數(shù)為奇函數(shù)的充要條件是它的圖象關(guān)于原點(diǎn)對(duì)稱;一個(gè)函數(shù)為偶函數(shù)的充要條件是它的圖象關(guān)于y軸對(duì)稱。
(2)如要函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱且函數(shù)值恒為零,那么它既是奇函數(shù)又是偶函數(shù)。
。3)若奇函數(shù)f(x)在x=0處有意義,則f(0)=0成立。
(4)若f(x)是具有奇偶性的區(qū)間單調(diào)函數(shù),則奇(偶)函數(shù)在正負(fù)對(duì)稱區(qū)間上的單調(diào)性是相同(反)的。
。5)若f(x)的定義域關(guān)于原點(diǎn)對(duì)稱,則F(x)=f(x)+f(—x)是偶函數(shù),G(x)=f(x)—f(—x)是奇函數(shù)。
。6)奇偶性的推廣
函數(shù)y=f(x)對(duì)定義域內(nèi)的任一x都有f(a+x)=f(a—x),則y=f(x)的圖象關(guān)于直線x=a對(duì)稱,即y=f(a+x)為偶函數(shù)。函數(shù)y=f(x)對(duì)定義域內(nèi)的任—x都有f(a+x)=—f(a—x),則y=f(x)的圖象關(guān)于點(diǎn)(a,0)成中心對(duì)稱圖形,即y=f(a+x)為奇函數(shù)。
。ㄎ澹、函數(shù)的單調(diào)性
1、單調(diào)函數(shù)
對(duì)于函數(shù)f(x)定義在某區(qū)間[a,b]上任意兩點(diǎn)x1,x2,當(dāng)x1>x2時(shí),都有不等式f(x1)>(或<)f(x2)成立,稱f(x)在[a,b]上單調(diào)遞增(或遞減);增函數(shù)或減函數(shù)統(tǒng)稱為單調(diào)函數(shù)。
對(duì)于函數(shù)單調(diào)性的定義的理解,要注意以下三點(diǎn):
。1)單調(diào)性是與“區(qū)間”緊密相關(guān)的概念。一個(gè)函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性。
。2)單調(diào)性是函數(shù)在某一區(qū)間上的“整體”性質(zhì),因此定義中的x1,x2具有任意性,不能用特殊值代替。
。3)單調(diào)區(qū)間是定義域的子集,討論單調(diào)性必須在定義域范圍內(nèi)。
(4)注意定義的兩種等價(jià)形式:
設(shè)x1、x2∈[a,b],那么:
、僭赱a、b]上是增函數(shù);
在[a、b]上是減函數(shù)。
②在[a、b]上是增函數(shù)。
在[a、b]上是減函數(shù)。
需要指出的是:①的幾何意義是:增(減)函數(shù)圖象上任意兩點(diǎn)(x1,f(x1))、(x2,f(x2))連線的斜率都大于(或小于)零。
。5)由于定義都是充要性命題,因此由f(x)是增(減)函數(shù),且(或x1>x2),這說明單調(diào)性使得自變量間的不等關(guān)系和函數(shù)值之間的不等關(guān)系可以“正逆互推”。
5、復(fù)合函數(shù)y=f[g(x)]的單調(diào)性
若u=g(x)在區(qū)間[a,b]上的單調(diào)性,與y=f(u)在[g(a),g(b)](或g(b),g(a))上的單調(diào)性相同,則復(fù)合函數(shù)y=f[g(x)]在[a,b]上單調(diào)遞增;否則,單調(diào)遞減。簡(jiǎn)稱“同增、異減”。
在研究函數(shù)的單調(diào)性時(shí),常需要先將函數(shù)化簡(jiǎn),轉(zhuǎn)化為討論一些熟知函數(shù)的單調(diào)性。因此,掌握并熟記一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的單調(diào)性,將大大縮短我們的判斷過程。
6、證明函數(shù)的單調(diào)性的方法
(1)依定義進(jìn)行證明。其步驟為:
①任取x1、x2∈M且x1(或<)f(x2);
②根據(jù)定義,得出結(jié)論。
。2)設(shè)函數(shù)y=f(x)在某區(qū)間內(nèi)可導(dǎo)。
如果f′(x)>0,則f(x)為增函數(shù);如果f′(x)<0,則f(x)為減函數(shù)。
。、函數(shù)的圖象
函數(shù)的圖象是函數(shù)的直觀體現(xiàn),應(yīng)加強(qiáng)對(duì)作圖、識(shí)圖、用圖能力的培養(yǎng),培養(yǎng)用數(shù)形結(jié)合的思想方法解決問題的意識(shí)。
求作圖象的函數(shù)表達(dá)式
與f(x)的關(guān)系
由f(x)的圖象需經(jīng)過的變換
y=f(x)±b(b>0)
沿y軸向平移b個(gè)單位
y=f(x±a)(a>0)
沿x軸向平移a個(gè)單位
y=—f(x)
作關(guān)于x軸的對(duì)稱圖形
y=f(|x|)
右不動(dòng)、左右關(guān)于y軸對(duì)稱
y=|f(x)|
上不動(dòng)、下沿x軸翻折
y=f—1(x)
作關(guān)于直線y=x的對(duì)稱圖形
y=f(ax)(a>0)
橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變
y=af(x)
縱坐標(biāo)伸長(zhǎng)到原來的|a|倍,橫坐標(biāo)不變
y=f(—x)
作關(guān)于y軸對(duì)稱的圖形
【例】定義在實(shí)數(shù)集上的函數(shù)f(x),對(duì)任意x,y∈R,有f(x+y)+f(x—y)=2f(x)·f(y),且f(0)≠0。
、偾笞C:f(0)=1;
、谇笞C:y=f(x)是偶函數(shù);
、廴舸嬖诔(shù)c,使求證對(duì)任意x∈R,有f(x+c)=—f(x)成立;試問函數(shù)f(x)是不是周期函數(shù),如果是,找出它的一個(gè)周期;如果不是,請(qǐng)說明理由。
思路分析:我們把沒有給出解析式的函數(shù)稱之為抽象函數(shù),解決這類問題一般采用賦值法。
解答:①令x=y=0,則有2f(0)=2f2(0),因?yàn)閒(0)≠0,所以f(0)=1。
②令x=0,則有f(x)+f(—y)=2f(0)·f(y)=2f(y),所以f(—y)=f(y),這說明f(x)為偶函數(shù)。
、鄯謩e用(c>0)替換x、y,有f(x+c)+f(x)=
所以,所以f(x+c)=—f(x)。
兩邊應(yīng)用中的結(jié)論,得f(x+2c)=—f(x+c)=—[—f(x)]=f(x),所以f(x)是周期函數(shù),2c就是它的一個(gè)周期。
函數(shù)知識(shí)點(diǎn)總結(jié)15
【—正比例函數(shù)公式】正比例函數(shù)要領(lǐng):一般地,兩個(gè)變量x,y之間的關(guān)系式可以表示成形如y=kx(k為常數(shù),且k≠0)的函數(shù),那么y就叫做x的正比例函數(shù)。
正比例函數(shù)的性質(zhì)
定義域:R(實(shí)數(shù)集)
值域:R(實(shí)數(shù)集)
奇偶性:奇函數(shù)
單調(diào)性:
當(dāng)>0時(shí),圖像位于第一、三象限,從左往右,y隨x的.增大而增大(單調(diào)遞增),為增函數(shù);
當(dāng)k<0時(shí),圖像位于第二、四象限,從左往右,y隨x的增大而減小(單調(diào)遞減),為減函數(shù)。
周期性:不是周期函數(shù)。
對(duì)稱性:無軸對(duì)稱性,但關(guān)于原點(diǎn)中心對(duì)稱。
正比例函數(shù)圖像的作法
1、在x允許的范圍內(nèi)取一個(gè)值,根據(jù)解析式求出y的值;
2、根據(jù)第一步求的x、y的值描出點(diǎn);
3、作出第二步描出的點(diǎn)和原點(diǎn)的直線(因?yàn)閮牲c(diǎn)確定一直線)。
【函數(shù)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
函數(shù)知識(shí)點(diǎn)總結(jié)02-10
函數(shù)知識(shí)點(diǎn)總結(jié)06-23
函數(shù)知識(shí)點(diǎn)總結(jié)【熱門】08-21
(精)函數(shù)知識(shí)點(diǎn)總結(jié)08-25
(精品)函數(shù)知識(shí)點(diǎn)總結(jié)08-22
函數(shù)知識(shí)點(diǎn)總結(jié)(精)08-21
(精)函數(shù)知識(shí)點(diǎn)總結(jié)08-25