正弦和余弦數(shù)學(xué)教案教學(xué)設(shè)計(jì)
教學(xué)目的
1,使學(xué)生了解本章所要解決的新問(wèn)題是:已知直角三角形的一條邊和另一個(gè)元素(一邊或一銳角),求這個(gè)直角三角形的其他元素。
2,使學(xué)生了解“在直角三角形中,當(dāng)銳角A取固定值時(shí),它的對(duì)邊與斜邊的比值也是一個(gè)固定值。
重點(diǎn)、難點(diǎn)、關(guān)鍵
1,重點(diǎn):正弦的概念。
2,難點(diǎn):正弦的概念。
3,關(guān)鍵:相似三角形對(duì)應(yīng)邊成比例的性質(zhì)。
教學(xué)過(guò)程()
一、復(fù)習(xí)提問(wèn)
1、什么叫直角三角形?
2,如果直角三角形ABC中∠C為直角,它的直角邊是什么?斜邊是什么?這個(gè)直角三角形可用什么記號(hào)來(lái)表示?
二、新授
1,讓學(xué)生閱讀教科書(shū)第一頁(yè)上的插圖和引例,然后回答問(wèn)題:
。1)這個(gè)有關(guān)測(cè)量的實(shí)際問(wèn)題有什么特點(diǎn)?(有一個(gè)重要的測(cè)量點(diǎn)不可能到達(dá))
。2)把這個(gè)實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)模型后,其圖形是什么圖形?(直角三角形)
。3)顯然本例不能用勾股定理求解,那么能不能根據(jù)已知條件,在地面上或紙上畫(huà)出另一個(gè)與它全等的直角三角形,并在這個(gè)全等圖形上進(jìn)行測(cè)量?(不一定能,因?yàn)樾边吋此艿拈L(zhǎng)度是一個(gè)較大的數(shù)值,這樣做就需要較大面積的平地或紙張,再說(shuō)畫(huà)圖也不方便。)
。4)這個(gè)實(shí)際問(wèn)題可歸結(jié)為怎樣的數(shù)學(xué)問(wèn)題?(在Rt△ABC中,已知銳角A和斜邊求∠A的對(duì)邊BC。)
但由于∠A不一定是特殊角,難以運(yùn)用學(xué)過(guò)的定理來(lái)證明BC的長(zhǎng)度,因此考慮能否通過(guò)式子變形和計(jì)算來(lái)求得BC的值。
2,在RT△ABC中,∠C=900,∠A=300,不管三角尺大小如何,∠A的對(duì)邊與斜邊的比值都等于1/2,根據(jù)這個(gè)比值,已知斜邊AB的長(zhǎng),就能算出∠A的對(duì)邊BC的長(zhǎng)。
類似地,在所有等腰的那塊三角尺中,由勾股定理可得∠A的對(duì)邊/斜邊=BC/AB=BC/=1/=/2 這就是說(shuō),當(dāng)∠A=450時(shí),∠A的對(duì)邊與斜邊的.比值等于/2,根據(jù)這個(gè)比值,已知斜邊AB的長(zhǎng),就能算出∠A的對(duì)邊BC的長(zhǎng)。
那么,當(dāng)銳角A取其他固定值時(shí),∠A的對(duì)邊與斜邊的比值能否也是一個(gè)固定值呢?
。ㄒ龑(dǎo)學(xué)生回答;在這些直角三角形中,∠A的對(duì)邊與斜邊的比值仍是一個(gè)固定值。)
三、鞏固練習(xí):
在△ABC中,∠C為直角。
1,如果∠A=600,那么∠B的對(duì)邊與斜邊的比值是多少?
2,如果∠A=600,那么∠A的對(duì)邊與斜邊的比值是多少?
3,如果∠A=300,那么∠B的對(duì)邊與斜邊的比值是多少?
4,如果∠A=450,那么∠B的對(duì)邊與斜邊的比值是多少?
四、小結(jié)
五、作業(yè)
1,復(fù)習(xí)教科書(shū)第1-3頁(yè)的全部?jī)?nèi)容。
2,選用課時(shí)作業(yè)設(shè)計(jì)。
【正弦和余弦數(shù)學(xué)教案教學(xué)設(shè)計(jì)】相關(guān)文章:
半角的正弦、余弦和正切說(shuō)課稿11-05
《兩角和與差的正弦余弦和正切公式》教學(xué)設(shè)計(jì)范文07-05
銳角三角函數(shù)正弦和余弦的教學(xué)設(shè)計(jì)05-16