- 相關(guān)推薦
關(guān)于導(dǎo)數(shù)在函數(shù)中的應(yīng)用的論文
【摘 要】新課程利用導(dǎo)數(shù)求曲線的切線,判斷或論證函數(shù)的單調(diào)性,函數(shù)的極值和最值。導(dǎo)數(shù)是分析和解決問題的有效工具。
【關(guān)鍵詞】導(dǎo)數(shù) 函數(shù)的切線 單調(diào)性 極值和最值
導(dǎo)數(shù)(導(dǎo)函數(shù)的簡稱)是一個特殊函數(shù),它的引出和定義始終貫穿著函數(shù)思想。新課程增加了導(dǎo)數(shù)的內(nèi)容,隨著課改的不斷深入,導(dǎo)數(shù)知識考查的要求逐漸加強,而且導(dǎo)數(shù)已經(jīng)由前幾年只是在解決問題中的輔助地位上升為分析和解決問題時的不可缺少的工具。函數(shù)是中學(xué)數(shù)學(xué)研究導(dǎo)數(shù)的一個重要載體,函數(shù)問題涉及高中數(shù)學(xué)較多的知識點和數(shù)學(xué)思想方法。近年好多省的高考題中都出現(xiàn)以函數(shù)為載體,通過研究其圖像性質(zhì),來考查學(xué)生的創(chuàng)新能力和探究能力的試題。本人結(jié)合教學(xué)實踐,就導(dǎo)數(shù)在函數(shù)中的應(yīng)用作個初步探究。
有關(guān)導(dǎo)數(shù)在函數(shù)中的應(yīng)用主要類型有:求函數(shù)的切線,判斷函數(shù)的單調(diào)性,求函數(shù)的極值和最值,利用函數(shù)的單調(diào)性證明不等式,這些類型成為近兩年最閃亮的熱點,是高中數(shù)學(xué)學(xué)習(xí)的重點之一,預(yù)計也是“新課標(biāo)”下高考的重點。
一、用導(dǎo)數(shù)求函數(shù)的切線 分析:根據(jù)導(dǎo)數(shù)的幾何意義求解。
解:y′ = 3x2-6x , 當(dāng)x=1時y′= - 3,即所求切線的斜率為-3.故所求切線的方程為y+3 = -3(x-1),即為:y = -3x.
1、方法提升:函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)的幾何意義,就是曲線y=f(x)在點P(x0, y=f(x0))處的切線的斜率。既就是說,曲線y=f(x)在點P(x0, y=f(x0))處的切線的斜率是f′(x0) ,相應(yīng)的切線方程為y-y0= f′(x0)(x-x0)。
二、用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性
例2.求函數(shù)y=x3-3x2-1的單調(diào)區(qū)間。
分析:求出導(dǎo)數(shù)y′,令y′>0或y′<0,解出x的取值范圍即可。
解:y′= 3x2-6x,由y′>0得3x2-6x﹥0,解得x﹤0或x﹥2。
由y′<0 得3x2-6x﹤0,解得0﹤x<2。
故 所求單調(diào)增區(qū)間為(-∞,0)∪(2,+∞),單調(diào)減區(qū)間為 (0 ,2 )。
三、用導(dǎo)數(shù)求函數(shù)的極值
例3.求函數(shù)f(x)=(1/3)x3-4x+4的極值
解:由 f′(x)=x2-4=0,解得x=2或x=-2.
當(dāng)x變化時,y′、y的變化情況如下:
當(dāng)x=-2時,y有極大值f(-2)=-(28/3),當(dāng)x=2時,y有極小值f(2)=-(4/3).
四、用導(dǎo)數(shù)求函數(shù)的最值
五、證明不等式
5、方法提升:利用導(dǎo)數(shù)證明不等式是近年高考中出現(xiàn)的一種熱點題型。其方法可以歸納為“構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)最值”。
總之,導(dǎo)數(shù)作為一種工具,在解決數(shù)學(xué)問題時使用非常方便,尤其是可以利用導(dǎo)數(shù)來解決函數(shù)的單調(diào)性,極值,最值以及切線問題。在導(dǎo)數(shù)的應(yīng)用過程中,要加強對基礎(chǔ)知識的理解,重視數(shù)學(xué)思想方法的應(yīng)用,達(dá)到優(yōu)化解題思維,簡化解題過程的目的,更在于使學(xué)生掌握一種科學(xué)的語言和工具,進(jìn)一步加深對函數(shù)的深刻理解和直觀認(rèn)識。
參考資料:
1、普通高中課程標(biāo)準(zhǔn)實驗教科書(北京師范大學(xué)出版社)
2、高中數(shù)學(xué)教學(xué)參考
【導(dǎo)數(shù)在函數(shù)中的應(yīng)用的論文】相關(guān)文章:
導(dǎo)數(shù)與函數(shù)的單調(diào)性的教學(xué)反思06-01
高二數(shù)學(xué)《導(dǎo)數(shù)與函數(shù)單調(diào)性》教學(xué)設(shè)計03-03
《導(dǎo)數(shù)及其應(yīng)用》教學(xué)反思(通用5篇)02-11
醫(yī)院管理中OA系統(tǒng)的應(yīng)用論文09-28
大數(shù)據(jù)在知識管理中的應(yīng)用論文03-03
多媒體在小學(xué)古詩教學(xué)中的應(yīng)用論文02-27
初中物理教學(xué)中的應(yīng)用論文10篇03-03
論客戶服務(wù)在供電營銷中的應(yīng)用論文02-27