中文字幕高清在线,中文字幕在线电影观看,中文字幕在线看,免费国产一区二区三区,男攻调教双性男总裁,热热涩热热狠狠色香蕉综合,亚洲精品网站在线观看不卡无广告

高中數(shù)學(xué)說(shuō)課稿

時(shí)間:2021-05-25 17:41:55 說(shuō)課稿 我要投稿

【精品】高中數(shù)學(xué)說(shuō)課稿三篇

  作為一名為他人授業(yè)解惑的教育工作者,總歸要編寫說(shuō)課稿,說(shuō)課稿有助于順利而有效地開展教學(xué)活動(dòng)。說(shuō)課稿應(yīng)該怎么寫才好呢?以下是小編整理的高中數(shù)學(xué)說(shuō)課稿3篇,歡迎大家借鑒與參考,希望對(duì)大家有所幫助。

【精品】高中數(shù)學(xué)說(shuō)課稿三篇

高中數(shù)學(xué)說(shuō)課稿 篇1

  大家好,今天我向大家說(shuō)課的題目是《正弦定理》。下面我將從以下幾個(gè)方面介紹我這堂課的教學(xué)設(shè)計(jì)。

  一 教材分析

  本節(jié)知識(shí)是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時(shí)常有解三角形的問(wèn)題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時(shí)?家恍┙獯痤}。因此,正弦定理和余弦定理的知識(shí)非常重要。

  根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識(shí)水平,制定如下教學(xué)目標(biāo):

  認(rèn)知目標(biāo):在創(chuàng)設(shè)的問(wèn)題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,推證正弦定理及簡(jiǎn)單運(yùn)用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問(wèn)題。

  能力目標(biāo):引導(dǎo)學(xué)生通過(guò)觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和觀察與邏輯思維能力,能體會(huì)用向量作為數(shù)形結(jié)合的工具,將幾何問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題。

  情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過(guò)學(xué)生之間、師生之間的交流、合作和評(píng)價(jià),調(diào)動(dòng)學(xué)生的主動(dòng)性和積極性,給學(xué)生成功的體驗(yàn),激發(fā)學(xué)生學(xué)習(xí)的興趣。

教學(xué)重點(diǎn):正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。

  教學(xué)難點(diǎn):正弦定理的探索及證明,已知兩邊和其中一邊的對(duì)角解三角形時(shí)判斷解的個(gè)數(shù)。

  二 教法

  根據(jù)教材的內(nèi)容和編排的特點(diǎn),為是更有效地突出重點(diǎn),空破難點(diǎn),以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識(shí)規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過(guò)程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨(dú)立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究?jī)?nèi)容,以生活實(shí)際為參照對(duì)象,讓學(xué)生的思維由問(wèn)題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。突破重點(diǎn)的手段:抓住學(xué)生情感的興奮點(diǎn),激發(fā)他們的興趣,鼓勵(lì)學(xué)生大膽猜想,積極探索,以及及時(shí)地鼓勵(lì),使他們知難而進(jìn)。另外,抓知識(shí)選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識(shí)特點(diǎn)入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。突破難點(diǎn)的方法:抓住學(xué)生的能力線聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外通過(guò)例題和練習(xí)來(lái)突破難點(diǎn)

  三 學(xué)法:

  指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個(gè)人、小組、集體等多種解難釋疑的嘗試活動(dòng),將自己所學(xué)知識(shí)應(yīng)用于對(duì)任意三角形性質(zhì)的探究。讓學(xué)生在問(wèn)題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動(dòng)手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強(qiáng)學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實(shí)事求是的科學(xué)態(tài)度,增強(qiáng)了鍥而不舍的求學(xué)精神。

  四 教學(xué)過(guò)程

  第一:創(chuàng)設(shè)情景,大概用2分鐘

  第二:實(shí)踐探究,形成概念,大約用25分鐘

  第三:應(yīng)用概念,拓展反思,大約用13分鐘

 。ㄒ唬﹦(chuàng)設(shè)情境,布疑激趣

  “興趣是最好的老師”,如果一節(jié)課有個(gè)好的開頭,那就意味著成功了一半,本節(jié)課由一個(gè)實(shí)際問(wèn)題引入,“工人師傅的一個(gè)三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長(zhǎng)為1m,想修好這個(gè)零件,但他不知道AC和BC的長(zhǎng)度是多少好去截料,你能幫師傅這個(gè)忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進(jìn)入今天的學(xué)習(xí)課題。

  (二)探尋特例,提出猜想

  1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進(jìn)行研究,發(fā)現(xiàn)正弦定理。

  2.那結(jié)論對(duì)任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計(jì)算器等工具對(duì)一般三角形進(jìn)行驗(yàn)證。

  3.讓學(xué)生總結(jié)實(shí)驗(yàn)結(jié)果,得出猜想:

  在三角形中,角與所對(duì)的邊滿足關(guān)系

  這為下一步證明樹立信心,不斷的使學(xué)生對(duì)結(jié)論的認(rèn)識(shí)從感性逐步上升到理性。

  (三)邏輯推理,證明猜想

  1.強(qiáng)調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

  2.鼓勵(lì)學(xué)生通過(guò)作高轉(zhuǎn)化為熟悉的直角三角形進(jìn)行證明。

  3.提示學(xué)生思考哪些知識(shí)能把長(zhǎng)度和三角函數(shù)聯(lián)系起來(lái),繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  4.思考是否還有其他的方法來(lái)證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來(lái)證明

 。ㄋ模w納總結(jié),簡(jiǎn)單應(yīng)用

  1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ,引?dǎo)學(xué)生發(fā)現(xiàn)定理具有對(duì)稱和諧美,提升對(duì)數(shù)學(xué)美的享受。

  2.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問(wèn)題。

  3.運(yùn)用正弦定理求解本節(jié)課引引入的三角形零件邊長(zhǎng)的問(wèn)題。自己參與實(shí)際問(wèn)題的解決,能激發(fā)學(xué)生知識(shí)后用于實(shí)際的價(jià)值觀。

  (五)講解例題,鞏固定理

  1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1簡(jiǎn)單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對(duì)邊,都可利用正弦定理來(lái)解三角形。

  2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

高中數(shù)學(xué)說(shuō)課稿 篇2

  高三第一階段復(fù)習(xí),也稱“知識(shí)篇”。在這一階段,學(xué)生重溫高一、高二所學(xué)課程,全面復(fù)習(xí)鞏固各個(gè)知識(shí)點(diǎn),熟練掌握基本方法和技能;然后站在全局的高度,對(duì)學(xué)過(guò)的知識(shí)產(chǎn)生全新認(rèn)識(shí)。在高一、高二時(shí),是以知識(shí)點(diǎn)為主線索,依次傳授講解的,由于后面的相關(guān)知識(shí)還沒(méi)有學(xué)到,不能進(jìn)行縱向聯(lián)系,所以,學(xué)的知識(shí)往往是零碎和散亂,而在第一輪復(fù)習(xí)時(shí),以章節(jié)為單位,將那些零碎的、散亂的知識(shí)點(diǎn)串聯(lián)起來(lái),并將他們系統(tǒng)化、綜合化,把各個(gè)知識(shí)點(diǎn)融會(huì)貫通。對(duì)于普通高中的學(xué)生,第一輪復(fù)習(xí)更為重要,我們希望能做高考試題中一些基礎(chǔ)題目,必須側(cè)重基礎(chǔ),加強(qiáng)復(fù)習(xí)的針對(duì)性,講求實(shí)效。

  一、內(nèi)容分析說(shuō)明

  1、本小節(jié)內(nèi)容是初中學(xué)習(xí)的多項(xiàng)式乘法的繼續(xù),它所研究的二項(xiàng)式的乘方的展開式,與數(shù)學(xué)的其他部分有密切的聯(lián)系:

 。1)二項(xiàng)展開式與多項(xiàng)式乘法有聯(lián)系,本小節(jié)復(fù)習(xí)可對(duì)多項(xiàng)式的變形起到復(fù)習(xí)深化作用。

 。2)二項(xiàng)式定理與概率理論中的二項(xiàng)分布有內(nèi)在聯(lián)系,利用二項(xiàng)式定理可得到一些組合數(shù)的`恒等式,因此,本小節(jié)復(fù)習(xí)可加深知識(shí)間縱橫聯(lián)系,形成知識(shí)網(wǎng)絡(luò)。

 。3)二項(xiàng)式定理是解決某些整除性、近似計(jì)算等問(wèn)題的一種方法。

  2、高考中二項(xiàng)式定理的試題幾乎年年有,多數(shù)試題的難度與課本習(xí)題相當(dāng),是容易題和中等難度的

  試題,考察的題型穩(wěn)定,通常以選擇題或填空題出現(xiàn),有時(shí)也與應(yīng)用題結(jié)合在一起求某些數(shù)、式的

  近似值。

  二、學(xué)校情況與學(xué)生分析

 。1)我校是一所鎮(zhèn)普通高中,學(xué)生的基礎(chǔ)不好,記憶力較差,反應(yīng)速度慢,普遍感到數(shù)學(xué)難學(xué)。但大部分學(xué)生想考大學(xué),主觀上有學(xué)好數(shù)學(xué)的愿望。

 。2)授課班是政治、地理班,學(xué)生聽(tīng)課積極性不高,聽(tīng)課率低(60﹪),注意力不能持久,不能連續(xù)從事某項(xiàng)數(shù)學(xué)活動(dòng)。課堂上喜歡輕松詼諧的氣氛,大部分能機(jī)械的模仿,部分學(xué)生好記筆記。

  三、教學(xué)目標(biāo)

  復(fù)習(xí)課二項(xiàng)式定理計(jì)劃安排兩個(gè)課時(shí),本課是第一課時(shí),主要復(fù)習(xí)二項(xiàng)展開式和通項(xiàng)。根據(jù)歷年高考對(duì)這部分的考查情況,結(jié)合學(xué)生的特點(diǎn),設(shè)定如下教學(xué)目標(biāo):

  1、知識(shí)目標(biāo):(1)理解并掌握二項(xiàng)式定理,從項(xiàng)數(shù)、指數(shù)、系數(shù)、通項(xiàng)幾個(gè)特征熟記它的展開式。

  (2)會(huì)運(yùn)用展開式的通項(xiàng)公式求展開式的特定項(xiàng)。

  2、能力目標(biāo):(1)教給學(xué)生怎樣記憶數(shù)學(xué)公式,如何提高記憶的持久性和準(zhǔn)確性,從而優(yōu)化記憶品質(zhì)。記憶力是一般數(shù)學(xué)能力,是其它能力的基礎(chǔ)。

  (2)樹立由一般到特殊的解決問(wèn)題的意識(shí),了解解決問(wèn)題時(shí)運(yùn)用的數(shù)學(xué)思想方法。

  3、情感目標(biāo):通過(guò)對(duì)二項(xiàng)式定理的復(fù)習(xí),使學(xué)生感覺(jué)到能掌握數(shù)學(xué)的部分內(nèi)容,樹立學(xué)好數(shù)學(xué)的信心。有意識(shí)地讓學(xué)生演練一些歷年高考試題,使學(xué)生體驗(yàn)到成功,在明年的高考中,他們也能得分。

  四、教學(xué)過(guò)程

  1、知識(shí)歸納

 。1)創(chuàng)設(shè)情景:①同學(xué)們,還記得嗎? 、 、 展開式是什么?

 、趯W(xué)生一起回憶、老師板書。

  設(shè)計(jì)意圖:①提出比較容易的問(wèn)題,吸引學(xué)生的注意力,組織教學(xué)。

 、跒閷W(xué)生能回憶起二項(xiàng)式定理作鋪墊:激活記憶,引起聯(lián)想。

  (2)二項(xiàng)式定理:①設(shè)問(wèn) 展開式是什么?待學(xué)生思考后,老師板書

  = C an+C an-1b1+…+C an-rbr+…+C bn(n∈N*)

 、诶蠋熞髮W(xué)生說(shuō)出二項(xiàng)展開式的特征并熟記公式:共有 項(xiàng);各項(xiàng)里a的指數(shù)從n起依次減小1,直到0為止;b的指數(shù)從0起依次增加1,直到n為止。每一項(xiàng)里a、b的指數(shù)和均為n。

 、垤柟叹毩(xí) 填空

  設(shè)計(jì)意圖:①教給學(xué)生記憶的方法,比較分析公式的特點(diǎn),記規(guī)律。

 、谧冇霉,熟悉公式。

 。3) 展開式中各項(xiàng)的系數(shù)C , C , C ,… , 稱為二項(xiàng)式系數(shù).

  展開式的通項(xiàng)公式Tr+1=C an-rbr , 其中r= 0,1,2,…n表示展開式中第r+1項(xiàng).

  2、例題講解

  例1求 的展開式的第4項(xiàng)的二項(xiàng)式系數(shù),并求的第4項(xiàng)的系數(shù)。

  講解過(guò)程

  設(shè)問(wèn):這里 ,要求的第4項(xiàng)的有關(guān)系數(shù),如何解決?

  學(xué)生思考計(jì)算,回答問(wèn)題;

  老師指明①當(dāng)項(xiàng)數(shù)是4時(shí), ,此時(shí) ,所以第4項(xiàng)的二項(xiàng)式系數(shù)是 ,

 、诘4項(xiàng)的系數(shù)與的第4項(xiàng)的二項(xiàng)式系數(shù)區(qū)別。

  板書

  解:展開式的第4項(xiàng)

  所以第4項(xiàng)的系數(shù)為 ,二項(xiàng)式系數(shù)為 。

  選題意圖:①利用通項(xiàng)公式求項(xiàng)的系數(shù)和二項(xiàng)式系數(shù);②復(fù)習(xí)指數(shù)冪運(yùn)算。

  例2 求 的展開式中不含的 項(xiàng)。

  講解過(guò)程

  設(shè)問(wèn):①不含的 項(xiàng)是什么樣的項(xiàng)?即這一項(xiàng)具有什么性質(zhì)?

  ②問(wèn)題轉(zhuǎn)化為第幾項(xiàng)是常數(shù)項(xiàng),誰(shuí)能看出哪一項(xiàng)是常數(shù)項(xiàng)?

  師生討論 “看不出哪一項(xiàng)是常數(shù)項(xiàng),怎么辦?”

  共同探討思路:利用通項(xiàng)公式,列出項(xiàng)數(shù)的方程,求出項(xiàng)數(shù)。

  老師總結(jié)思路:先設(shè)第 項(xiàng)為不含 的項(xiàng),得 ,利用這一項(xiàng)的指數(shù)是零,得到關(guān)于 的方程,解出 后,代回通項(xiàng)公式,便可得到常數(shù)項(xiàng)。

  板書

  解:設(shè)展開式的第 項(xiàng)為不含 項(xiàng),那么

  令 ,解得 ,所以展開式的第9項(xiàng)是不含的 項(xiàng)。

  因此 。

  選題意圖:①鞏固運(yùn)用展開式的通項(xiàng)公式求展開式的特定項(xiàng),形成基本技能。

  ②判斷第幾項(xiàng)是常數(shù)項(xiàng)運(yùn)用方程的思想;找到這一項(xiàng)的項(xiàng)數(shù)后,實(shí)現(xiàn)了轉(zhuǎn)化,體現(xiàn)轉(zhuǎn)化的數(shù)學(xué)思想。

  例3求 的展開式中, 的系數(shù)。

  解題思路:原式局部展開后,利用加法原理,可得到展開式中的 系數(shù)。

  板書

  解:由于 ,則 的展開式中 的系數(shù)為 的展開式中 的系數(shù)之和。

  而 的展開式含 的項(xiàng)分別是第5項(xiàng)、第4項(xiàng)和第3項(xiàng),則 的展開式中 的系數(shù)分別是: 。

  所以 的展開式中 的系數(shù)為

  例4 如果在( + )n的展開式中,前三項(xiàng)系數(shù)成等差數(shù)列,求展開式中的有理項(xiàng).

  解:展開式中前三項(xiàng)的系數(shù)分別為1, , ,

  由題意得2× =1+ ,得n=8.

  設(shè)第r+1項(xiàng)為有理項(xiàng),T =C · ·x ,則r是4的倍數(shù),所以r=0,4,8.

  有理項(xiàng)為T1=x4,T5= x,T9= .

  3、課堂練習(xí)

  1.(20xx年江蘇,7)(2x+ )4的展開式中x3的系數(shù)是

  A.6B.12 C.24 D.48

  解析:(2x+ )4=x2(1+2 )4,在(1+2 )4中,x的系數(shù)為C ·22=24.

  答案:C

  2.(20xx年全國(guó)Ⅰ,5)(2x3- )7的展開式中常數(shù)項(xiàng)是

  A.14 B.14 C.42 D.-42

  解析:設(shè)(2x3- )7的展開式中的第r+1項(xiàng)是T =C (2x3) (- )r=C 2 ·

 。ǎ1)r·x ,

  當(dāng)- +3(7-r)=0,即r=6時(shí),它為常數(shù)項(xiàng),∴C (-1)6·21=14.

  答案:A

  3.(20xx年湖北,文14)已知(x +x )n的展開式中各項(xiàng)系數(shù)的和是128,則展開式中x5的系數(shù)是_____________.(以數(shù)字作答)

  解析:∵(x +x )n的展開式中各項(xiàng)系數(shù)和為128,

  ∴令x=1,即得所有項(xiàng)系數(shù)和為2n=128.

  ∴n=7.設(shè)該二項(xiàng)展開式中的r+1項(xiàng)為T =C (x ) ·(x )r=C ·x ,

  令 =5即r=3時(shí),x5項(xiàng)的系數(shù)為C =35.

  答案:35

  五、課堂教學(xué)設(shè)計(jì)說(shuō)明

  1、這是一堂復(fù)習(xí)課,通過(guò)對(duì)例題的研究、討論,鞏固二項(xiàng)式定理通項(xiàng)公式,加深對(duì)項(xiàng)的系數(shù)、項(xiàng)的二項(xiàng)式系數(shù)等有關(guān)概念的理解和認(rèn)識(shí),形成求二項(xiàng)式展開式某些指定項(xiàng)的基本技能,同時(shí),要培養(yǎng)學(xué)生的運(yùn)算能力,邏輯思維能力,強(qiáng)化方程的思想和轉(zhuǎn)化的思想。

  2、在例題的選配上,我設(shè)計(jì)了一定梯度。第一層次是給出二項(xiàng)式,求指定的項(xiàng),即項(xiàng)數(shù)已知,只需直接代入通項(xiàng)公式即可(例1);第二層次(例2)則需要自己創(chuàng)造代入的條件,先判斷哪一項(xiàng)為所求,即先求項(xiàng)數(shù),利用通項(xiàng)公式中指數(shù)的關(guān)系求出,此后轉(zhuǎn)化為第一層次的問(wèn)題。第三層次突出數(shù)學(xué)思想的滲透,例3需要變形才能求某一項(xiàng)的系數(shù),恒等變形是實(shí)現(xiàn)轉(zhuǎn)化的手段。在求每個(gè)局部展開式的某項(xiàng)系數(shù)時(shí),又有分類討論思想的指導(dǎo)。而例4的設(shè)計(jì)是想增加題目的綜合性,求的n過(guò)程中,運(yùn)用等差數(shù)列、組合數(shù)n等知識(shí),求出后,有化歸為前面的問(wèn)題。

  六、個(gè)人見(jiàn)解

高中數(shù)學(xué)說(shuō)課稿 篇3

  1. 教材分析

  1-1教學(xué)內(nèi)容及包含的知識(shí)點(diǎn)

  (1) 本課內(nèi)容是高中數(shù)學(xué)第二冊(cè)第七章第三節(jié)《兩條直線的位置關(guān)系》的最后一個(gè)內(nèi)容。

  (2) 包含知識(shí)點(diǎn):點(diǎn)到直線的距離公式和兩平行線的距離公式。

  1-2教材所處地位、作用和前后聯(lián)系

  本節(jié)課是兩條直線位置關(guān)系的最后一個(gè)內(nèi)容,在此之前,有對(duì)兩線位置關(guān)系的定性刻畫:平行、垂直,以及對(duì)相交兩線的定量刻畫:夾角、交點(diǎn)。在此之后,有圓錐曲線方程,因而本節(jié)既是對(duì)前面兩線垂直、兩線交點(diǎn)的復(fù)習(xí),又是為后面計(jì)算點(diǎn)線距離(在直線和圓錐曲線構(gòu)成的組合圖形中)提供一套工具。

  可見(jiàn),本課有承前啟后的作用。

  1-3教學(xué)大綱要求

  掌握點(diǎn)到直線的距離公式

  1-4高考大綱要求及在高考中的顯示形式

  掌握點(diǎn)到直線的距離公式。在近年的高考中,通常以直線和圓錐曲線構(gòu)成的組合圖形為背景,判斷直線和圓錐曲線的位置或構(gòu)成三角形求高,涉及絕對(duì)值,直線垂直,最小值等。

  1-5教學(xué)目標(biāo)及確定依據(jù)

  教學(xué)目標(biāo)

  (1) 掌握點(diǎn)到直線的距離的概念、公式及公式的推導(dǎo)過(guò)程,能用公式來(lái)求點(diǎn)線距離和線線距離。

  (2) 培養(yǎng)學(xué)生探究性思維方法和由特殊到一般的研究能力。

  (3) 認(rèn)識(shí)事物之間相互聯(lián)系、互相轉(zhuǎn)化的辯證法思想,培養(yǎng)學(xué)生轉(zhuǎn)化知識(shí)的能力。

  (4) 滲透人文精神,既注重學(xué)生的智慧獲得,又注重學(xué)生的情感發(fā)展。

  確定依據(jù):

  中華人民共和國(guó)教育部制定的《全日制普通高級(jí)中學(xué)數(shù)學(xué)教學(xué)大綱》(20xx年4月第一版),《基礎(chǔ)教育課程改革綱要(試行)》,《高考考試說(shuō)明》(20xx年)

  1-6教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵

  (1) 重點(diǎn):點(diǎn)到直線的距離公式

  確定依據(jù):由本節(jié)在教材中的地位確定

  (2) 難點(diǎn):點(diǎn)到直線的距離公式的推導(dǎo)

  確定依據(jù):根據(jù)定義進(jìn)行推導(dǎo),思路自然,但運(yùn)算繁瑣;用等積法推導(dǎo),運(yùn)算較簡(jiǎn)單,但思路不自然,學(xué)生易被動(dòng),主體性得不到體現(xiàn)。

  分析“嘗試性題組”解題思路可突破難點(diǎn)

  (3)關(guān)鍵:實(shí)現(xiàn)兩個(gè)轉(zhuǎn)化。一是將點(diǎn)線距離轉(zhuǎn)化為定點(diǎn)到垂足的距離;二是利用等積法將其轉(zhuǎn)化為直角三角形中三頂點(diǎn)的距離。

  2.教法

  2-1發(fā)現(xiàn)法:本節(jié)課為了培養(yǎng)學(xué)生探究性思維目標(biāo),在教學(xué)過(guò)程中,使老師的主導(dǎo)性和學(xué)生的主體性有機(jī)結(jié)合,使學(xué)生能夠愉快地自覺(jué)學(xué)習(xí),通過(guò)學(xué)生自己練習(xí)“嘗試性題組”,引導(dǎo)、啟發(fā)學(xué)生分析、發(fā)現(xiàn)、比較、論證等,從而形成完整的數(shù)學(xué)模型。

  確定依據(jù):

  (1)美國(guó)教育學(xué)家波利亞的教與學(xué)三原則:主動(dòng)學(xué)習(xí)原則,最佳動(dòng)機(jī)原則,階段漸進(jìn)性原則。

  (2)事物之間相互聯(lián)系,相互轉(zhuǎn)化的辯證法思想。

  2-2教具:多媒體和黑板等傳統(tǒng)教具

  3. 學(xué)法

  3-1發(fā)現(xiàn)法:豐富學(xué)生的數(shù)學(xué)活動(dòng),學(xué)生經(jīng)過(guò)練習(xí)、觀察、分析、探索等步驟,自己發(fā)現(xiàn)解決問(wèn)題的方法,比較論證后得到一般性結(jié)論,形成完整的數(shù)學(xué)模型,再運(yùn)用所得理論和方法去解決問(wèn)題。

  一句話:還課堂以生命力,還學(xué)生以活力。

  3-2學(xué)情:

  (1)知識(shí)能力狀況,本節(jié)為兩線位置關(guān)系的最后一個(gè)內(nèi)容,在這之前學(xué)生已經(jīng)系統(tǒng)的學(xué)習(xí)了直線方程的各種形式,有對(duì)兩線位置關(guān)系的定性認(rèn)識(shí)和對(duì)兩線相交的定量認(rèn)識(shí),為本節(jié)推證公式涉及到直線方程、兩線垂直、兩線交點(diǎn)作好了知識(shí)儲(chǔ)備。同時(shí)學(xué)生對(duì)解析幾何的實(shí)質(zhì)中,用坐標(biāo)系溝通直線與方程的研究辦法,有了初步認(rèn)識(shí),數(shù)形結(jié)合的思想正逐漸趨于成熟。

  (2)心理特點(diǎn):又見(jiàn)“點(diǎn)到直線的距離”(初中已學(xué)習(xí)定義),學(xué)生既熟悉又陌生,既困惑又好奇,探詢動(dòng)機(jī)由此而生。

  (3)生活經(jīng)驗(yàn):數(shù)學(xué)源于生活,生活中的點(diǎn)線距隨處可見(jiàn),怎樣將實(shí)際問(wèn)題數(shù)學(xué)化,是每個(gè)追求成長(zhǎng)、追求發(fā)展的學(xué)生所渴求的一種研究能力。豐富的課堂數(shù)學(xué)活動(dòng)能夠讓他們真正參與,體驗(yàn)過(guò)程,錘煉意志,培養(yǎng)能力。

  3-3學(xué)具:直尺、三角板

  4. 教學(xué)評(píng)價(jià)

  學(xué)生完成反思性學(xué)習(xí)報(bào)告,書寫要求:

  (1) 整理知識(shí)結(jié)構(gòu)。

  (2) 總結(jié)所學(xué)到的基本知識(shí),技能和數(shù)學(xué)思想方法。

  (3) 總結(jié)在學(xué)習(xí)過(guò)程中的經(jīng)驗(yàn),發(fā)明發(fā)現(xiàn),學(xué)習(xí)障礙等,說(shuō)明產(chǎn)生障礙的原因。

  (4) 談?wù)勀銓?duì)老師教法的建議和要求。

  作用:

  (1) 通過(guò)反思使學(xué)生對(duì)所學(xué)知識(shí)系統(tǒng)化。反思的過(guò)程實(shí)際上是學(xué)生思維內(nèi)化,知識(shí)深化和認(rèn)知牢固化的一個(gè)心理活動(dòng)過(guò)程。

  (2) 報(bào)告的寫作本身就是一種創(chuàng)造性活動(dòng)。

  (3) 及時(shí)了解學(xué)生學(xué)習(xí)過(guò)程中的知識(shí)缺陷,思維障礙,有利于教師了解學(xué)生對(duì)自己的教法的滿意度和效果,以便作出及時(shí)調(diào)整,及時(shí)進(jìn)行補(bǔ)償性教學(xué)。

  5. 板書設(shè)計(jì)

  (略)

  6. 教學(xué)的反思總結(jié)

  心理歷練,得意之處,困惑之處,知識(shí)的傳承發(fā)展,如何修正完善等。

【【精品】高中數(shù)學(xué)說(shuō)課稿三篇】相關(guān)文章:

高中數(shù)學(xué)說(shuō)課稿02-17

高中數(shù)學(xué)說(shuō)課稿(精選10篇)11-02

高中數(shù)學(xué)說(shuō)課稿范文2篇02-14

人教版高中數(shù)學(xué)必修一說(shuō)課稿 函數(shù)的概念說(shuō)課稿11-02

牧場(chǎng)之國(guó)精品說(shuō)課稿11-08

【精品】關(guān)于說(shuō)課稿11篇02-23

夢(mèng)圓飛天精品說(shuō)課稿11-05

《珍珠鳥》說(shuō)課稿模板【精品】12-17

驚弓之鳥精品說(shuō)課稿11-03

人教版高中數(shù)學(xué)A版必修二 傾斜角與斜率說(shuō)課稿11-02